Your browser doesn't support javascript.
loading
Plasma-Treated Ultrathin Ternary FePSe3 Nanosheets as a Bifunctional Electrocatalyst for Efficient Zinc-Air Batteries.
Hao, Yanan; Huang, Aijian; Han, Silin; Huang, Hongjiao; Song, Junnan; Sun, Xiaoli; Wang, Zhiguo; Li, Linlin; Hu, Feng; Xue, Jianjun; Peng, Shengjie.
Afiliação
  • Hao Y; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Huang A; School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
  • Han S; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Huang H; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Song J; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Sun X; Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, P. R. China.
  • Wang Z; School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.
  • Li L; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Hu F; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Xue J; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
  • Peng S; Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
ACS Appl Mater Interfaces ; 12(26): 29393-29403, 2020 Jul 01.
Article em En | MEDLINE | ID: mdl-32490656
Developing novel bifunctional electrocatalysts with advanced oxygen electrocatalytic activity is pivotal for next-generation energy-storage devices. Herein, we present ultrathin oxygen-doped FePSe3 (FePSe3-O) nanosheets by Ar/O2 plasma treatment, with remarkable surface atom reorganization. Such surface atom reorganization generates multiple crystalline-amorphous interfaces that benefit the kinetics of oxygen evolution reaction, achieving a low overpotential of only 261 mV at 10 mA cm-2 with a small Tafel slope of 41.13 mV dec-1. Density functional theory calculation indicates that oxygen doping can also modulate the electrical states at the Fermi level with a decreased band gap responsible for the enhanced electrocatalytic performance. Such unique FePSe3-O nanosheets can be further fabricated as the air cathode in rechargeable liquid zinc-air batteries (ZABs), which deliver a high open circuit potential of 1.47 V, a small charge-discharge voltage gap of 0.80 V, and good cycling stability for more than 800 circles. As a proof of concept, the flexible solid-state ZABs assembled with FePSe3-O nanosheets as cathode also display a favorable charge-discharge performance, durable stability, and good bendability. This work sheds new insights into the rational design of defect-rich ternary thiophosphate nanosheets by plasma treatment toward enhanced oxygen electrocatalysts in metal-air batteries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article