Your browser doesn't support javascript.
loading
Voltage-Dependent Anion Channels Influence Cytotoxicity of ME-344, a Therapeutic Isoflavone.
Zhang, Leilei; Townsend, Danyelle M; Morris, Morgan; Maldonado, Eduardo N; Jiang, Yu-Lin; Broome, Ann-Marie; Bethard, Jennifer R; Ball, Lauren E; Tew, Kenneth D.
Afiliação
  • Zhang L; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Townsend DM; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Morris M; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Maldonado EN; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Jiang YL; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Broome AM; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Bethard JR; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Ball LE; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina.
  • Tew KD; Department of Cell and Molecular Pharmacology and Experimental Therapeutics (L.Z., M.M., E.N.M., Y.-L.J., A.-M.B., J.R.B., L.E.B., K.D.T.) and Department of Pharmaceutical and Biomedical Sciences (D.M.T.), Medical University of South Carolina, Charleston, South Carolina tewk@musc.edu.
J Pharmacol Exp Ther ; 374(2): 308-318, 2020 08.
Article em En | MEDLINE | ID: mdl-32546528
ABSTRACT
ME-344 is a second-generation cytotoxic isoflavone with anticancer activity promulgated through interference with mitochondrial functions. Using a click chemistry version of the drug together with affinity-enriched mass spectrometry, voltage-dependent anion channels (VDACs) 1 and 2 were identified as drug targets. To determine the importance of VDAC1 or 2 to cytotoxicity, we used lung cancer cells that were either sensitive (H460) or intrinsically resistant (H596) to the drug. In H460 cells, depletion of VDAC1 and VDAC2 by small interfering RNA impacted ME-344 effects by diminishing generation of reactive oxygen species (ROS), preventing mitochondrial membrane potential dissipation, and moderating ME-344-induced cytotoxicity and mitochondrial-mediated apoptosis. Mechanistically, VDAC1 and VDAC2 knockdown prevented ME-344-induced apoptosis by inhibiting Bax mitochondrial translocation and cytochrome c release as well as apoptosis in these H460 cells. We conclude that VDAC1 and 2, as mediators of the response to oxidative stress, have roles in modulating ROS generation, Bax translocation, and cytochrome c release during mitochondrial-mediated apoptosis caused by ME-344. SIGNIFICANCE STATEMENT Dissecting preclinical drug mechanisms are of significance in development of a drug toward eventual Food and Drug Administration approval.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canal de Ânion 1 Dependente de Voltagem / Canal de Ânion 2 Dependente de Voltagem / Isoflavonas / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Canal de Ânion 1 Dependente de Voltagem / Canal de Ânion 2 Dependente de Voltagem / Isoflavonas / Antineoplásicos Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article