Your browser doesn't support javascript.
loading
Spatio-temporal dynamics of arbuscular mycorrhizal fungi and soil organic carbon in coastal saline soil of China.
Zhang, Huan-Shi; Zhou, Ming-Xi; Zai, Xue-Ming; Zhao, Fu-Geng; Qin, Pei.
Afiliação
  • Zhang HS; Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, 210042, China. zhanghuanshi@126.com.
  • Zhou MX; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 21008, China. zhanghuanshi@126.com.
  • Zai XM; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 21008, China. zhanghuanshi@126.com.
  • Zhao FG; Biology Centre,Czech Academy of Sciences, Institute of Plant Molecular Biology, Ceske Budejovice, 37005, Czech Republic.
  • Qin P; Horticulture Department, Jinling Institute of Technology, Nanjing, 210038, China.
Sci Rep ; 10(1): 9781, 2020 06 17.
Article em En | MEDLINE | ID: mdl-32555531
A comprehensive understanding of the relationship between arbuscular mycorrhizal (AM) fungi and coastal saline soil organic carbon (SOC) is crucial for analysis of the function of coastal wetlands in soil carbon sequestration. In a field experiment, the temporal and spatial dynamics of AM fungi, glomalin-related soil protein (GRSP) - which is described as a N-linked glycoprotein and the putative gene product of AM fungi, SOC, and soil aggregates were investigated in halophyte Kosteletzkya virginica rhizosphere soil of coastal saline areas of North Jiangsu, China. Soil samples were collected from a depth of up to 30 cm in two plantation regions from August 2012 to May 2013. Results showed K. virginica formed a strong symbiotic relationship to AM fungi. AM colonization and spore density were the highest in the 10-20 cm soil layer of Jinhai farm in August 2012, because of the presence of numerous fibrous roots in this soil layer. The total GRSP and SOC were the highest in the 0-10 cm soil layer in May 2013 and November 2012, respectively. Correlation coefficient analysis revealed that AM colonization and spore density were positively correlated with total GRSP. Meanwhile, total GRSP was significantly positively correlated with large macroaggregates (>3 mm), SOC, total P, Olsen P, and soil microbial biomass carbon (SMBC), but negatively correlated with microaggregates (<0.25 mm), soil EC, total N, and pH. SOC was positively correlated with spore density, large macroaggregates, small macroaggregates (2-0.25 mm), alkaline N, and SMBC and negatively correlated with microaggregates, EC, pH, and total K. Although it may be a statistical artifact, we found an interesting phenomenon that there was no significant correlation between soil aggregates and AM colonization or spore density. Hence, total GRSP is a vital source of saline soil C pool and an important biological indicator for evaluating coastal saline SOC pool and soil fertility, while AM colonization or spore density may not be.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Proteínas Fúngicas / Glicoproteínas / Micorrizas / Sequestro de Carbono País/Região como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microbiologia do Solo / Proteínas Fúngicas / Glicoproteínas / Micorrizas / Sequestro de Carbono País/Região como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article