Your browser doesn't support javascript.
loading
Gas phase Elemental abundances in Molecular cloudS (GEMS) II. On the quest for the sulphur reservoir in molecular clouds: the H2S case.
Navarro-Almaida, D; Le Gal, R; Fuente, A; Rivière-Marichalar, P; Wakelam, V; Cazaux, S; Caselli, P; Laas, Jacob C; Alonso-Albi, T; Loison, J C; Gerin, M; Kramer, C; Roueff, E; Bachiller, R; Commerçon, B; Friesen, R; García-Burillo, S; Goicoechea, J R; Giuliano, B M; Jiménez-Serra, I; Kirk, J M; Lattanzi, V; Malinen, J; Marcelino, N; Martín-Domènech, R; Muñoz Caro, G M; Pineda, J; Tercero, B; Treviño-Morales, S P; Roncero, O; Hacar, A; Tafalla, M; Ward-Thompson, D.
Afiliação
  • Navarro-Almaida D; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Le Gal R; Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA.
  • Fuente A; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Rivière-Marichalar P; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Wakelam V; Laboratoire d'Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France.
  • Cazaux S; Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands; University of Leiden, P.O. Box 9513, NL, 2300 RA, Leiden, The Netherlands.
  • Caselli P; Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany.
  • Laas JC; Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany.
  • Alonso-Albi T; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Loison JC; Institut des Sciences Moléculaires (ISM), CNRS, Univ. Bordeaux, 351 cours de la Libération, F-33400, Talence, France.
  • Gerin M; Observatoire de Paris, PSL Research University, CNRS, École Normale Supérieure, Sorbonne Universités, UPMC Univ. Paris 06, 75005, Paris, France.
  • Kramer C; Instituto Radioastronomía Milimétrica (IRAM), Av. Divina Pastora 7, Nucleo Central, 18012, Granada, Spain.
  • Roueff E; Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-92190, Meudon, France.
  • Bachiller R; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Commerçon B; École Normale Supérieure de Lyon, CRAL, UMR CNRS 5574, Université Lyon I, 46 Allée d'Italie, 69364, Lyon Cedex 07, France.
  • Friesen R; National Radio Astronomy Observatory, 520 Edgemont Rd., Charlottesville VA USA 22901.
  • García-Burillo S; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Goicoechea JR; Instituto de Física Fundamental (CSIC), Calle Serrano 123, 28006, Madrid, Spain.
  • Giuliano BM; Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany.
  • Jiménez-Serra I; Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
  • Kirk JM; Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK.
  • Lattanzi V; Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany.
  • Malinen J; Department of Physics, University of Helsinki, PO Box 64, 00014, Helsinki, Finland.
  • Marcelino N; Institute of Physics I, University of Cologne, Cologne, Germany.
  • Martín-Domènech R; Instituto de Física Fundamental (CSIC), Calle Serrano 123, 28006, Madrid, Spain.
  • Muñoz Caro GM; Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA.
  • Pineda J; Centro de Astrobiología (CSIC-INTA), Ctra. de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
  • Tercero B; Centre for Astrochemical Studies, Max-Planck-Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748, Garching, Germany.
  • Treviño-Morales SP; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
  • Roncero O; Chalmers University of Technology, Department of Space, Earth and Environment, SE-412 93 Gothenburg, Sweden.
  • Hacar A; Instituto de Física Fundamental (CSIC), Calle Serrano 123, 28006, Madrid, Spain.
  • Tafalla M; Leiden Observatory, Leiden University, PO Box 9513, 2300-RA, Leiden, The Netherlands.
  • Ward-Thompson D; Observatorio Astronómico Nacional (OAN), Alfonso XII, 3, 28014, Madrid, Spain.
Astron Astrophys ; 6372020 May.
Article em En | MEDLINE | ID: mdl-32565548
ABSTRACT
CONTEXT Sulphur is one of the most abundant elements in the Universe. Surprisingly, sulphuretted molecules are not as abundant as expected in the interstellar medium and the identity of the main sulphur reservoir is still an open question.

AIMS:

Our goal is to investigate the H2S chemistry in dark clouds, as this stable molecule is a potential sulphur reservoir.

METHODS:

Using millimeter observations of CS, SO, H2S, and their isotopologues, we determine the physical conditions and H2S abundances along the cores TMC 1-C, TMC 1-CP, and Barnard 1b. The gas-grain model Nautilus is used to model the sulphur chemistry and explore the impact of photo-desorption and chemical desorption on the H2S abundance.

RESULTS:

Our modeling shows that chemical desorption is the main source of gas-phase H2S in dark cores. The measured H2S abundance can only be fitted if we assume that the chemical desorption rate decreases by more than a factor of 10 when n H > 2 × 104. This change in the desorption rate is consistent with the formation of thick H2O and CO ice mantles on grain surfaces. The observed SO and H2S abundances are in good agreement with our predictions adopting an undepleted value of the sulphur abundance. However, the CS abundance is overestimated by a factor of 5 - 10. Along the three cores, atomic S is predicted to be the main sulphur reservoir.

CONCLUSIONS:

The gaseous H2S abundance is well reproduced, assuming undepleted sulphur abundance and chemical desorption as the main source of H2S. The behavior of the observed H2S abundance suggests a changing desorption efficiency, which would probe the snowline in these cold cores. Our model, however, highly overestimates the observed gas-phase CS abundance. Given the uncertainty in the sulphur chemistry, we can only conclude that our data are consistent with a cosmic elemental S abundance with an uncertainty of a factor of 10.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article