Regulation of Cas9 by viral proteins Tat and Rev for HIV-1 inactivation.
Antiviral Res
; 180: 104856, 2020 08.
Article
em En
| MEDLINE
| ID: mdl-32579898
While combined antiretroviral therapy (cART) has had a great impact on the treatment of HIV-1 infection, the persistence of long-lived cells with an intact provirus precludes virus eradication and sterilizing cure. CRISPR/Cas9 genome editing has become an efficient tool to eradicate HIV-1 genome or prevent replication. Furthermore, regulation of Cas9 gene expression by HIV can induce mutations that could inactivate the proviral genome, making a gene therapy safe by preventing the induction of non-specific mutations, which could compromise the integrity of healthy cells. In this study, isolated HIV-1 LTR, INS and RRE sequences were used to regulate Cas9 expression in HEK293 cells, and guide RNAs (gRNAs) were designed to target mutations in HIV-1 conserved regions such as tat and rev regulatory genes. We demonstrate that Cas9 expression in our system is controlled by the HIV-1 Tat and Rev proteins, leading to self-regulation of gene edition, and showing a strong antiviral effect by inactivating HIV-1 replication. Sequencing analysis confirmed that viral genome was partially excised by multiplex editing (90% efficiency), and viral capsid protein (CA-p24) was undetectable. In conclusion, the self-regulated CRISPR/Cas9 system may be a reliable and accurate strategy for eliminating HIV-1 infection whose effect will be restricted to infected cells.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Inativação de Vírus
/
Produtos do Gene rev do Vírus da Imunodeficiência Humana
/
Produtos do Gene tat do Vírus da Imunodeficiência Humana
/
Proteína 9 Associada à CRISPR
Limite:
Humans
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article