Your browser doesn't support javascript.
loading
Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit.
Xu, Y; Hua, Z; Chen, Tao; Pan, X; Li, X; Han, J; Cai, W; Ma, Y; Wang, H; Song, Y P; Xue, Zheng-Yuan; Sun, L.
Afiliação
  • Xu Y; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Hua Z; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Chen T; Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
  • Pan X; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Li X; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Han J; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Cai W; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Ma Y; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Wang H; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Song YP; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
  • Xue ZY; Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.
  • Sun L; Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China.
Phys Rev Lett ; 124(23): 230503, 2020 Jun 12.
Article em En | MEDLINE | ID: mdl-32603172
ABSTRACT
Using geometric phases to realize noise-resilient quantum computing is an important method to enhance the control fidelity. In this work, we experimentally realize a universal nonadiabatic geometric quantum gate set in a superconducting qubit chain. We characterize the realized single- and two-qubit geometric gates with both quantum process tomography and randomized benchmarking methods. The measured average fidelities for the single-qubit rotation gates and two-qubit controlled-Z gate are 0.9977(1) and 0.977(9), respectively. Besides, we also experimentally demonstrate the noise-resilient feature of the realized single-qubit geometric gates by comparing their performance with the conventional dynamical gates with different types of errors in the control field. Thus, our experiment proves a way to achieve high-fidelity geometric quantum gates for robust quantum computation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2020 Tipo de documento: Article