Your browser doesn't support javascript.
loading
Crustal processes sustain Arctic abiotic gas hydrate and fluid flow systems.
Waghorn, K A; Vadakkepuliyambatta, S; Plaza-Faverola, A; Johnson, J E; Bünz, S; Waage, M.
Afiliação
  • Waghorn KA; CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT - The Arctic University of Norway, Dramsveien 201, 9037, Tromsø, Norway. kate.a.waghorn@uit.no.
  • Vadakkepuliyambatta S; CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT - The Arctic University of Norway, Dramsveien 201, 9037, Tromsø, Norway.
  • Plaza-Faverola A; CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT - The Arctic University of Norway, Dramsveien 201, 9037, Tromsø, Norway.
  • Johnson JE; Department of Earth Sciences, University of New Hampshire, 56 College Road, Durham, NH, 03824, USA.
  • Bünz S; CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT - The Arctic University of Norway, Dramsveien 201, 9037, Tromsø, Norway.
  • Waage M; CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT - The Arctic University of Norway, Dramsveien 201, 9037, Tromsø, Norway.
Sci Rep ; 10(1): 10679, 2020 Jun 30.
Article em En | MEDLINE | ID: mdl-32606428
ABSTRACT
The Svyatogor Ridge and surroundings, located on the sediment-covered western flank of the Northern Knipovich Ridge, host extensive gas hydrate and related fluid flow systems. The fluid flow system here manifests in the upper sedimentary sequence as gas hydrates and free gas, indicated by bottom simulating reflections (BSRs) and amplitude anomalies. Using 2D seismic lines and bathymetric data, we map tectonic features such as faults, crustal highs, and indicators of fluid flow processes. Results indicate a strong correlation between crustal faults, crustal highs and fluid accumulations in the overlying sediments, as well as an increase in geothermal gradient over crustal faults. We conclude here that gas generated during the serpentinization of exhumed mantle rocks drive the extensive occurrence of gas hydrate and fluid flow systems in the region and transform faults act as an additional major pathway for fluid circulation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article