Your browser doesn't support javascript.
loading
Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula.
Zhang, Lijun; Kamphuis, Lars G; Guo, Yanqiong; Jacques, Silke; Singh, Karam B; Gao, Ling-Ling.
Afiliação
  • Zhang L; CSIRO Agriculture and Food, Wembley, WA 6014, Australia.
  • Kamphuis LG; College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China.
  • Guo Y; CSIRO Agriculture and Food, Wembley, WA 6014, Australia.
  • Jacques S; The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia.
  • Singh KB; CSIRO Agriculture and Food, Wembley, WA 6014, Australia.
  • Gao LL; College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article em En | MEDLINE | ID: mdl-32629952
ABSTRACT
Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago truncatula. To investigate the potential role of ethylene, a M. truncatula ethylene- insensitive mutant, sickle, was analysed. The sickle mutant occurs in the accession A17 that has moderate resistance to Acyrthosiphon kondoi, A. pisum and Therioaphis trifolii. The sickle mutant resulted in increased antibiosis-mediated resistance against A. kondoi and T. trifolii but had no effect on A. pisum. When sickle was introduced into a genetic background carrying resistance genes, AKR (A. kondoi resistance), APR (A. pisum resistance) and TTR (T. trifolii resistance), it had no effect on the strong aphid resistance mediated by these genes, suggesting that ethylene signaling is not essential for their function. Interestingly, for the moderate aphid resistant accession, the sickle mutant delayed leaf senescence following aphid infestation and reduced the plant biomass losses caused by both A. kondoi and T. trifolii. These results suggest manipulation of the ethylene signaling pathway could provide aphid resistance and enhance plant tolerance against aphid feeding.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Afídeos / Medicago truncatula / Etilenos / Defesa das Plantas contra Herbivoria Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Afídeos / Medicago truncatula / Etilenos / Defesa das Plantas contra Herbivoria Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article