ß -Cypermethrin promotes the adipogenesis of 3T3-L1 cells via inducing autophagy and shaping an adipogenesis-friendly microenvironment.
Acta Biochim Biophys Sin (Shanghai)
; 52(8): 821-831, 2020 Aug 05.
Article
em En
| MEDLINE
| ID: mdl-32637997
The toxicity of synthetic pyrethroids has garnered attention, and studies have revealed that pyrethroids promote fat accumulation and lead to obesity in mice. Nevertheless, the effect of ß-cypermethrin (ß-CYP) on adipogenesis and its underlying mechanism remains largely unknown. In this study, mouse embryo fibroblasts 3T3-L1 cells were exposed to ß-CYP, and the cell viability, intracellular reactive oxygen species (ROS) level, autophagy, and adipogenesis were assessed to investigate the roles of oxidative stress and autophagy in the toxic effects of ß-CYP on adipogenesis. The results demonstrated that treatment with 100 µΜ ß-CYP elevated the ROS level, decreased mitochondrion membrane potential, stimulated autophagy, and enhanced the adipogenesis induced by the mixture of insulin, dexamethasone, and 3-isobutyl-1-methylxanthine. However, co-treatment with N-acetyl-L-cysteine partially blocked the abovementioned effects of ß-CYP in 3T3-L1 cells. In addition, co-treatment with rapamycin, an autophagy agonist, enhanced the inductive effect of ß-CYP on adipogenesis, whereas co-treatment with 3-methyladenine blocked the enhancement of adipogenesis caused by ß-CYP. Moreover, ß-CYP also altered the microenvironment of 3T3-L1 cells to an adipogenesis-friendly one by reducing the extracellular expression of miR-34a, suggesting that the culture media of ß-CYP-treated 3T3-L1 cells could shift macrophages to M2 type. Taken together, the data obtained in the present study demonstrated that ß-CYP promoted adipogenesis via oxidative stress-mediated autophagy disturbance, and it caused macrophage M2 polarization via the alteration of miR-34a level in the microenvironment. The study demonstrated the adipogenesis-promoting effect of ß-CYP and unveiled the potential mechanism.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Piretrinas
/
Autofagia
/
Adipogenia
/
Microambiente Celular
Limite:
Animals
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article