Your browser doesn't support javascript.
loading
Endobronchial ultrasound-guided injection of NBTXR3 radio-enhancing nanoparticles into mediastinal and hilar lymph nodes: a swine model to evaluate feasibility, injection technique, safety, nanoparticle retention and dispersion.
Casal, Roberto F; Schwalk, Audra J; Fowlkes, Natalie; Aburto, Rebeca Romero; Norton, William; Dixon, Katherine A; Lin, Steven; Shaitelman, Simona F; Chintalapani, Gouthami; Hill, Lori.
Afiliação
  • Casal RF; Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Schwalk AJ; Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Fowlkes N; Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Aburto RR; Nanobiotix SA, Paris, France.
  • Norton W; Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Dixon KA; John S. Dunn Center for Radiological Sciences, Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Lin S; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Shaitelman SF; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Chintalapani G; Siemens Medical Solutions USA Inc., Malvern, PA, USA.
  • Hill L; Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
J Thorac Dis ; 12(5): 2317-2324, 2020 May.
Article em En | MEDLINE | ID: mdl-32642136
ABSTRACT

BACKGROUND:

Loco-regionally advanced lung cancer is typically treated with a combination of chemotherapy and radiation therapy, but overall survival and local control remain poor. Radio-enhancing nanoparticles such as NBTXR3 activated by radiotherapy results in increased cell death and potentially an anti-tumor immune response. The goal of this study was to assess the feasibility and safety of endobronchial ultrasound (EBUS)-guided injection of NBTXR3 into mediastinal and hilar lymph nodes (LN), as well as assess nanoparticle retention in the LN post-injection.

METHODS:

Animals underwent bronchoscopy under general anesthesia with EBUS-guided injection of NBTXR3 into hilar and mediastinal LN. LN and injection volumes were calculated based on pre-injection computed tomography (CT) scans. CT scans were repeated at 5 min, 30 min, and 8 days post-injection. Blood-draws were also obtained at baseline and post-injection. Animals were then housed, monitored, and sacrificed 8 days post-injection. Necropsy was then performed with gross and histologic analysis of LN.

RESULTS:

A total of 20 LN were injected in 5 pigs (4 LN per animal). Nanoparticles were retained in 100% of LN at 30 min, and 90% of LN at 8 days. Extravasation of nanoparticles was seen in 4 out of the 20 LN. There were no cases of nanoparticle embolization visible by CT in distant organs. Small air-bubbles were introduced in the targets and surrounding tissue in 3 out of 20 LN. Of note, at 8 days, none of these air-bubbles were present on CT scan. There were no intra-procedural or post-procedural complications in either CT scans or necropsy findings. Pigs remained clinically stable and neither laboratory values nor necropsy showed evidence of inflammation.

CONCLUSIONS:

EBUS-guided injection of NBTXR3 radio-enhancing nanoparticles can be safely performed achieving a high rate of nanoparticle retention, low extravasation, and no visible nanoparticle embolization.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article