Your browser doesn't support javascript.
loading
Proteomics and Informatics for Understanding Phases and Identifying Biomarkers in COVID-19 Disease.
Whetton, Anthony D; Preston, George W; Abubeker, Semira; Geifman, Nophar.
Afiliação
  • Whetton AD; Stoller Biomarker Discovery Centre, Faculty of Biology Medicine and Health (FBMH), University of Manchester, Manchester M20 4GJ, United Kingdom.
  • Preston GW; Stem Cell and Leukaemia Proteomics Laboratory, Manchester Cancer Research Centre, University of Manchester, Manchester M13 9PL, United Kingdom.
  • Abubeker S; Manchester National Institute for Health Biomedical Research Centre, Manchester M13 9WL, United Kingdom.
  • Geifman N; Stoller Biomarker Discovery Centre, Faculty of Biology Medicine and Health (FBMH), University of Manchester, Manchester M20 4GJ, United Kingdom.
J Proteome Res ; 19(11): 4219-4232, 2020 11 06.
Article em En | MEDLINE | ID: mdl-32657586
The emergence of novel coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 coronavirus, has necessitated the urgent development of new diagnostic and therapeutic strategies. Rapid research and development, on an international scale, has already generated assays for detecting SARS-CoV-2 RNA and host immunoglobulins. However, the complexities of COVID-19 are such that fuller definitions of patient status, trajectory, sequelae, and responses to therapy are now required. There is accumulating evidence-from studies of both COVID-19 and the related disease SARS-that protein biomarkers could help to provide this definition. Proteins associated with blood coagulation (D-dimer), cell damage (lactate dehydrogenase), and the inflammatory response (e.g., C-reactive protein) have already been identified as possible predictors of COVID-19 severity or mortality. Proteomics technologies, with their ability to detect many proteins per analysis, have begun to extend these early findings. To be effective, proteomics strategies must include not only methods for comprehensive data acquisition (e.g., using mass spectrometry) but also informatics approaches via which to derive actionable information from large data sets. Here we review applications of proteomics to COVID-19 and SARS and outline how pipelines involving technologies such as artificial intelligence could be of value for research on these diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pneumonia Viral / Infecções por Coronavirus / Proteômica / Pandemias / Betacoronavirus Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pneumonia Viral / Infecções por Coronavirus / Proteômica / Pandemias / Betacoronavirus Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article