Your browser doesn't support javascript.
loading
High temperature damage to fatty acids and carbohydrate metabolism in tall fescue by coupling deep transcriptome and metabolome analysis.
Hu, Tao; Sun, Xiao-Yan; Zhao, Zhuang-Jun; Amombo, Erick; Fu, Jin-Min.
Afiliação
  • Hu T; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China. Electro
  • Sun XY; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
  • Zhao ZJ; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
  • Amombo E; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
  • Fu JM; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China; School
Ecotoxicol Environ Saf ; 203: 110943, 2020 Oct 15.
Article em En | MEDLINE | ID: mdl-32678750
ABSTRACT
High temperature damage impairs the growth of tall fescue by inhibiting secondary metabolites. Little is known about the regulation pattern of the fatty acids and carbohydrate metabolism at the whole-transcriptome level in tall fescue under high temperature stress. Here, two tall fescue genotypes, heat tolerant PI578718 and heat sensitive PI234881 were subjected to high temperature stress for 36 h. PI 578718 showed higher SPAD chloroplast value, lower EL and leaf injury than PI 234881 during the first 36 h high-temperature stress. Furthermore, by transcriptomic analysis, 121 genes were found to be induced during the second energy production phase in tall fescue exposed to high-temperature conditions, indicating that there may be one energy-sensing system in cool-season turfgrass to adapt high-temperature conditions. PI 578718 showed higher differentially expressed unigenes involved in fatty acids and carbohydrate metabolism compared with PI 234881 for 36 h heat stress. Interestingly, a metabolomic analysis using GC-MS uncovered that the sugars and sugar alcohol accounted for more than 65.06% of the total 41 metabolites content and high-temperature elevated the rate to 82.89-91.16% in PI 578718. High-temperature damage decreased the rate of fatty acid in the total 41 metabolites content and PI 578718 showed lower content than in PI 234881, which might be attributed to the down-regulated genes in fatty acid biosynthesis pathway in tall fescue. The integration of deep transcriptome and metabolome analyses provides systems-wide datasets to facilitate the identification of crucial regulation factors in cool-season turfgrass in response to high-temperature damage.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resposta ao Choque Térmico / Festuca / Metabolismo dos Carboidratos / Ácidos Graxos / Temperatura Alta Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Resposta ao Choque Térmico / Festuca / Metabolismo dos Carboidratos / Ácidos Graxos / Temperatura Alta Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article