Your browser doesn't support javascript.
loading
Self-assembly of an alkynylpyrene derivative for multi-responsive fluorescence behavior and photoswitching performance.
Xia, Cong-Xin; Wang, Ning; Sun, Pan-Pan; Tang, Shao-Xiong; Xu, Xing-Dong; Tan, Ye-Bang; Xin, Xia.
Afiliação
  • Xia CX; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
  • Wang N; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
  • Sun PP; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
  • Tang SX; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
  • Xu XD; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
  • Tan YB; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
  • Xin X; National Engineering Research Center for Colloidal Materials, Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.
Soft Matter ; 16(31): 7390-7399, 2020 Aug 12.
Article em En | MEDLINE | ID: mdl-32697271
Highly emissive fluorophores based on polyaromatic hydrocarbons with tunable emission properties and aggregated structures play a very important role in relevant functional studies. In this study, a novel alkynylpyrene derivative 1 was synthesized, which exhibits unimolecular to excimer emission in methanol with an increasing concentration accompanied by the formation of nanovesicles via the π-π stacking, hydrogen bond and hydrophobic interaction. The self-assembly behavior as well as emission properties of 1 in aprotic polar solvents (ACN, acetone, DMF and DMSO) can also be adjusted by the volume fraction of the poor solvent H2O, which can induce 1 self-assembly to excimer state and could be applied in information transfer. Moreover, upon visible light irradiation, photoswitchable performance of nanovesicles of 1 was observed in which the emission markedly changes from yellow to blue; this is attributed to the cycloaddition reaction of alkynyl groups and singlet oxygen, which can be generated without the addition of external photosensitizers. The multi-responsive and fluorescence behavior of the alkynylpyrene derivative show that the self-assembly can be used to expand the development of this type of fluorophores, and the novel photoinduced tunability of the fluorescence emission provides an effective strategy to obtain high-performance transmitting and sensing materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article