Self-assembly of an alkynylpyrene derivative for multi-responsive fluorescence behavior and photoswitching performance.
Soft Matter
; 16(31): 7390-7399, 2020 Aug 12.
Article
em En
| MEDLINE
| ID: mdl-32697271
Highly emissive fluorophores based on polyaromatic hydrocarbons with tunable emission properties and aggregated structures play a very important role in relevant functional studies. In this study, a novel alkynylpyrene derivative 1 was synthesized, which exhibits unimolecular to excimer emission in methanol with an increasing concentration accompanied by the formation of nanovesicles via the π-π stacking, hydrogen bond and hydrophobic interaction. The self-assembly behavior as well as emission properties of 1 in aprotic polar solvents (ACN, acetone, DMF and DMSO) can also be adjusted by the volume fraction of the poor solvent H2O, which can induce 1 self-assembly to excimer state and could be applied in information transfer. Moreover, upon visible light irradiation, photoswitchable performance of nanovesicles of 1 was observed in which the emission markedly changes from yellow to blue; this is attributed to the cycloaddition reaction of alkynyl groups and singlet oxygen, which can be generated without the addition of external photosensitizers. The multi-responsive and fluorescence behavior of the alkynylpyrene derivative show that the self-assembly can be used to expand the development of this type of fluorophores, and the novel photoinduced tunability of the fluorescence emission provides an effective strategy to obtain high-performance transmitting and sensing materials.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article