Your browser doesn't support javascript.
loading
TRPV4 Inhibition and CRISPR-Cas9 Knockout Reduce Inflammation Induced by Hyperphysiological Stretching in Human Annulus Fibrosus Cells.
Cambria, Elena; Arlt, Matthias J E; Wandel, Sandra; Krupkova, Olga; Hitzl, Wolfgang; Passini, Fabian S; Hausmann, Oliver N; Snedeker, Jess G; Ferguson, Stephen J; Wuertz-Kozak, Karin.
Afiliação
  • Cambria E; Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland.
  • Arlt MJE; Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland.
  • Wandel S; Department of Orthopedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.
  • Krupkova O; Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland.
  • Hitzl W; Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland.
  • Passini FS; Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
  • Hausmann ON; Spine Surgery, University Hospital Basel, 4031 Basel, Switzerland.
  • Snedeker JG; Research Office (Biostatistics), Paracelsus Medical University, 5020 Salzburg, Austria.
  • Ferguson SJ; Department of Ophthalmology and Optometry, Paracelsus Medical University, 5020 Salzburg, Austria.
  • Wuertz-Kozak K; Research Program Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University, 5020 Salzburg, Austria.
Cells ; 9(7)2020 07 21.
Article em En | MEDLINE | ID: mdl-32708074
ABSTRACT
Mechanical loading and inflammation interact to cause degenerative disc disease and low back pain (LBP). However, the underlying mechanosensing and mechanotransductive pathways are poorly understood. This results in untargeted pharmacological treatments that do not take the mechanical aspect of LBP into account. We investigated the role of the mechanosensitive ion channel TRPV4 in stretch-induced inflammation in human annulus fibrosus (AF) cells. The cells were cyclically stretched to 20% hyperphysiological strain. TRPV4 was either inhibited with the selective TRPV4 antagonist GSK2193874 or knocked out (KO) via CRISPR-Cas9 gene editing. The gene expression, inflammatory mediator release and MAPK pathway activation were analyzed. Hyperphysiological cyclic stretching significantly increased the IL6, IL8, and COX2 mRNA, PGE2 release, and activated p38 MAPK. The TRPV4 pharmacological inhibition significantly attenuated these effects. TRPV4 KO further prevented the stretch-induced upregulation of IL8 mRNA and reduced IL6 and IL8 release, thus supporting the inhibition data. We provide novel evidence that TRPV4 transduces hyperphysiological mechanical signals into inflammatory responses in human AF cells, possibly via p38. Additionally, we show for the first time the successful gene editing of human AF cells via CRISPR-Cas9. The pharmacological inhibition or CRISPR-based targeting of TRPV4 may constitute a potential therapeutic strategy to tackle discogenic LBP in patients with AF injury.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Canais de Cátion TRPV / Técnicas de Inativação de Genes / Sistemas CRISPR-Cas / Anel Fibroso / Proteína 9 Associada à CRISPR Limite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Mecânico / Canais de Cátion TRPV / Técnicas de Inativação de Genes / Sistemas CRISPR-Cas / Anel Fibroso / Proteína 9 Associada à CRISPR Limite: Adolescent / Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article