Your browser doesn't support javascript.
loading
100 MHz bandwidth planar laser-generated ultrasound source for hydrophone calibration.
Rajagopal, Srinath; Cox, Ben T.
Afiliação
  • Rajagopal S; Ultrasound and Underwater Acoustics Group, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK. Electronic address: srinath.rajagopal@npl.co.uk.
  • Cox BT; Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, UK.
Ultrasonics ; 108: 106218, 2020 Dec.
Article em En | MEDLINE | ID: mdl-32721650
ABSTRACT
High-frequency calibration of hydrophones is becoming increasingly important, both for clinical and scientific applications of ultrasound, and user safety. At present, the calibrations available routinely to the user community extend to 60 MHz. However, hydrophones that can measure beyond this are available, and ultrasonic fields often contain energy at higher frequencies, e.g., generated through nonlinear propagation of high-amplitude ultrasound used for therapeutic applications, and the increasing use of higher frequencies in imaging. Therefore, there is a need for calibrations up to at least 100 MHz, to allow ultrasonic fields to be accurately characterized, and the risk of harmful bioeffects to be properly assessed. Currently, sets of focused piezoelectric transducers are used to meet the pressure amplitude and bandwidth requirements of Primary Standard calibration facilities. However, when the frequency is high enough such that the size of the ultrasound focus becomes less than the hydrophone element's diameter, the uncertainty due to spatial averaging becomes significant, and can be as high as 20% at 100 MHz. As an alternate to piezoelectric transducers, a laser-generated ultrasound calibration source was designed, fabricated, and characterized. The source consists of an optically absorbing carbon-polymer nanocomposite excited by a large-diameter 1064 nm laser pulse of 2.6 ns duration. Peak pressure amplitudes of several Mega-Pascal were readily achievable, and the signal contained measurable frequency components up to 100 MHz. The variation in the pressure amplitudes was less than 2% from its mean over a three-hour test period. The ultrasound beam was sufficiently broad that the uncertainties due to spatial averaging were negligible.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article