Your browser doesn't support javascript.
loading
Monitoring Italian COVID-19 spread by a forced SEIRD model.
Loli Piccolomini, Elena; Zama, Fabiana.
Afiliação
  • Loli Piccolomini E; Department of Computer Science and Engineering, University of Bologna, Bologna, Italy.
  • Zama F; Department of Mathematics, University of Bologna, Bologna, Italy.
PLoS One ; 15(8): e0237417, 2020.
Article em En | MEDLINE | ID: mdl-32760133
Due to the recent evolution of the COVID-19 outbreak, the scientific community is making efforts to analyse models for understanding the present situation and for predicting future scenarios. In this paper, we propose a forced Susceptible-Exposed-Infected-Recovered-Dead (fSEIRD) differential model for the analysis and forecast of the COVID-19 spread in Italian regions, using the data from the Italian Protezione Civile (Italian Civil Protection Department) from 24/02/2020. In this study, we investigate an adaptation of fSEIRD by proposing two different piecewise time-dependent infection rate functions to fit the current epidemic data affected by progressive movement restriction policies put in place by the Italian government. The proposed models are flexible and can be quickly adapted to monitor various epidemic scenarios. Results on the regions of Lombardia and Emilia-Romagna confirm that the proposed models fit the data very accurately and make reliable predictions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pneumonia Viral / Modelos Estatísticos / Infecções por Coronavirus Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Europa Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pneumonia Viral / Modelos Estatísticos / Infecções por Coronavirus Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: Europa Idioma: En Ano de publicação: 2020 Tipo de documento: Article