Your browser doesn't support javascript.
loading
Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features.
Domínguez-Bajo, Ana; Rodilla, Beatriz Loreto; Calaresu, Ivo; Arché-Núñez, Ana; González-Mayorga, Ankor; Scaini, Denis; Pérez, Lucas; Camarero, Julio; Miranda, Rodolfo; López-Dolado, Elisa; González, María Teresa; Ballerini, Laura; Serrano, María Concepción.
Afiliação
  • Domínguez-Bajo A; Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, Madrid, 28049, Spain.
  • Rodilla BL; Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.
  • Calaresu I; International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste, 34136, Italy.
  • Arché-Núñez A; Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain.
  • González-Mayorga A; Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.
  • Scaini D; Instituto "Nicolas Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, Madrid, 28049, Spain.
  • Pérez L; Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, Toledo, 45071, Spain.
  • Camarero J; Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.
  • Miranda R; International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste, 34136, Italy.
  • López-Dolado E; Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.
  • González MT; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, Madrid, 28040, Spain.
  • Ballerini L; Fundación IMDEA Nanociencia, Calle Faraday 9, Madrid, 28049, Spain.
  • Serrano MC; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, Madrid, 28040, Spain.
Adv Biosyst ; 4(9): e2000117, 2020 09.
Article em En | MEDLINE | ID: mdl-32761896
ABSTRACT
Understanding neural physiopathology requires advances in nanotechnology-based interfaces, engineered to monitor the functional state of mammalian nervous cells. Such interfaces typically contain nanometer-size features for stimulation and recording as in cell-non-invasive extracellular microelectrode arrays. In such devices, it turns crucial to understand specific interactions of neural cells with physicochemical features of electrodes, which could be designed to optimize performance. Herein, versatile flexible nanostructured electrodes covered by arrays of metallic nanowires are fabricated and used to investigate the role of chemical composition and nanotopography on rat brain cells in vitro. By using Au and Ni as exemplary materials, nanostructure and chemical composition are demonstrated to play major roles in the interaction of neural cells with electrodes. Nanostructured devices are interfaced to rat embryonic cortical cells and postnatal hippocampal neurons forming synaptic circuits. It is shown that Au-based electrodes behave similarly to controls. Contrarily, Ni-based nanostructured electrodes increase cell survival, boost neuronal differentiation, and reduce glial cells with respect to flat counterparts. Nonetheless, Au-based electrodes perform superiorly compared to Ni-based ones. Under electrical stimulation, Au-based nanostructured substrates evoke intracellular calcium dynamics compatible with neural networks activation. These studies highlight the opportunity for these electrodes to excite a silent neural network by direct neuronal membranes depolarization.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Nanotecnologia / Estimulação Elétrica / Nanofios / Neurônios Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sinapses / Nanotecnologia / Estimulação Elétrica / Nanofios / Neurônios Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article