Your browser doesn't support javascript.
loading
A ferric reductase of Trypanosoma cruzi (TcFR) is involved in iron metabolism in the parasite.
Dick, Claudia F; de Moura Guimarães, Lídia; Carvalho-Kelly, Luiz Fernando; Cortes, Aline Leal; da Silva Lara Morcillo, Lucienne; da Silva Sampaio, Luzia; Meyer-Fernandes, José Roberto; Vieyra, Adalberto.
Afiliação
  • Dick CF; Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics,Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Center of Structural Biology and Bioimaging, Fede
  • de Moura Guimarães L; Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
  • Carvalho-Kelly LF; Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
  • Cortes AL; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
  • da Silva Lara Morcillo L; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
  • da Silva Sampaio L; Carlos Chagas Filho Institute of Biophysics,Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
  • Meyer-Fernandes JR; Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.
  • Vieyra A; Carlos Chagas Filho Institute of Biophysics,Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, Grande Ri
Exp Parasitol ; 217: 107962, 2020 Oct.
Article em En | MEDLINE | ID: mdl-32763249
Trypanosoma cruzi is a parasitic protozoan that infects various species of domestic and wild animals, triatomine bugs and humans. It is the etiological agent of American trypanosomiasis, also known as Chagas Disease, which affects about 17 million people in Latin America and is emerging elsewhere in the world. Iron (Fe) is a crucial micronutrient for almost all cells, acting as a cofactor for several metabolic enzymes. T. cruzi has a high requirement for Fe, using heminic and non-heminic Fe for growth and differentiation. Fe occurs in the oxidized (Fe3+) form in aerobic environments and needs to be reduced to Fe2+ before it enters cells. Fe-reductase, located in the plasma membranes of some organisms, catalyzes the Fe3+⇒ Fe2+ conversion. In the present study we found an amino acid sequence in silico that allowed us to identify a novel 35 kDa protein in T. cruzi with two transmembrane domains in the C-terminal region containing His residues that are conserved in the Ferric Reductase Domain Superfamily and are required for catalyzing Fe3+ reduction. Accordingly, we named this protein TcFR. Intact epimastigotes from the T. cruzi DM28c strain reduced the artificial Fe3+-containing substrate potassium ferricyanide in a cell density-dependent manner, following Michaelis-Menten kinetics. The TcFR activity was more than eightfold higher in a plasma membrane-enriched fraction than in whole homogenates, and this increase was consistent with the intensity of the 35 kDa band on Western blotting images obtained using anti-NOX5 raised against the human antigen. Immunofluorescence experiments demonstrated TcFR on the parasite surface. That TcFR is part of a catalytic complex allowing T. cruzi to take up Fe from the medium was confirmed by experiments in which DM28c was assayed after culturing in Fe-depleted medium: (i) proliferation during the stationary growth phase was five times slower; (ii) the relative expression of TcFR (qPCR) was 50% greater; (iii) intact cells had 120% higher Fe-reductase activity. This ensemble of results indicates that TcFR is a conserved enzyme in T. cruzi, and its catalytic properties are modulated in order to respond to external Fe fluctuations.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trypanosoma cruzi / FMN Redutase / Ferro Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Trypanosoma cruzi / FMN Redutase / Ferro Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article