Your browser doesn't support javascript.
loading
Exploring the dynamics of flagellar dynein within the axoneme with Fluctuating Finite Element Analysis.
Richardson, Robin A; Hanson, Benjamin S; Read, Daniel J; Harlen, Oliver G; Harris, Sarah A.
Afiliação
  • Richardson RA; Department of Chemistry, University College London, London, UK.
  • Hanson BS; School of Physics and Astronomy, University of Leeds, Leeds, UK.
  • Read DJ; School of Mathematics, University of Leeds, Leeds, UK.
  • Harlen OG; School of Mathematics, University of Leeds, Leeds, UK.
  • Harris SA; School of Physics and Astronomy, University of Leeds, Leeds, UK.
Q Rev Biophys ; 53: e9, 2020 08 10.
Article em En | MEDLINE | ID: mdl-32772965
Flagellar dyneins are the molecular motors responsible for producing the propagating bending motions of cilia and flagella. They are located within a densely packed and highly organised super-macromolecular cytoskeletal structure known as the axoneme. Using the mesoscale simulation technique Fluctuating Finite Element Analysis (FFEA), which represents proteins as viscoelastic continuum objects subject to explicit thermal noise, we have quantified the constraints on the range of molecular conformations that can be explored by dynein-c within the crowded architecture of the axoneme. We subsequently assess the influence of crowding on the 3D exploration of microtubule-binding sites, and specifically on the axial step length. Our calculations combine experimental information on the shape, flexibility and environment of dynein-c from three distinct sources; negative stain electron microscopy, cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET). Our FFEA simulations show that the super-macromolecular organisation of multiple protein complexes into higher-order structures can have a significant influence on the effective flexibility of the individual molecular components, and may, therefore, play an important role in the physical mechanisms underlying their biological function.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dineínas / Substâncias Macromoleculares / Axonema / Flagelos Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dineínas / Substâncias Macromoleculares / Axonema / Flagelos Idioma: En Ano de publicação: 2020 Tipo de documento: Article