Your browser doesn't support javascript.
loading
Buffer Influence on the Amino Acid Silica Interaction.
Bag, Saientan; Rauwolf, Stefan; Suyetin, Mikhail; Schwaminger, Sebastian P; Wenzel, Wolfgang; Berensmeier, Sonja.
Afiliação
  • Bag S; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
  • Rauwolf S; Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich(TUM), Garching, Germany.
  • Suyetin M; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
  • Schwaminger SP; Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich(TUM), Garching, Germany.
  • Wenzel W; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
  • Berensmeier S; Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich(TUM), Garching, Germany.
Chemphyschem ; 21(20): 2347-2356, 2020 10 16.
Article em En | MEDLINE | ID: mdl-32794279
ABSTRACT
Protein-surface interactions are exploited in various processes in life sciences and biotechnology. Many of such processes are performed in presence of a buffer system, which is generally believed to have an influence on the protein-surface interaction but is rarely investigated systematically. Combining experimental and theoretical methodologies, we herein demonstrate the strong influence of the buffer type on protein-surface interactions. Using state of the art chromatographic experiments, we measure the interaction between individual amino acids and silica, as a reference to understand protein-surface interactions. Among all the 20 proteinogenic amino acids studied, we found that arginine (R) and lysine (K) bind most strongly to silica, a finding validated by free energy calculations. We further measured the binding of R and K at different pH in presence of two different buffers, MOPS (3-(N-morpholino)propanesulfonic acid) and TRIS (tris(hydroxymethyl)aminomethane), and find dramatically different behavior. In presence of TRIS, the binding affinity of R/K increases with pH, whereas we observe an opposite trend for MOPS. These results can be understood using a multiscale modelling framework combining molecular dynamics simulation and Langmuir adsorption model. The modelling approach helps to optimize buffer conditions in various fields like biosensors, drug delivery or bio separation engineering prior to the experiment.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article