Your browser doesn't support javascript.
loading
Upconverting Nanocarriers Enable Triggered Microtubule Inhibition and Concurrent Ferroptosis Induction for Selective Treatment of Triple-Negative Breast Cancer.
Zhu, Jundong; Dai, Peipei; Liu, Fang; Li, Yao; Qin, Yan; Yang, Qian; Tian, Ran; Fan, Aiping; Medeiros, Simone de Fatima; Wang, Zheng; Zhao, Yanjun.
Afiliação
  • Zhu J; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Dai P; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Liu F; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Li Y; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Qin Y; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Yang Q; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Tian R; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China.
  • Fan A; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Medeiros SF; Engineering School of Lorena, University of São Paulo, 12.602-810 Lorena, São Paulo Brazil.
  • Wang Z; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
  • Zhao Y; School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
Nano Lett ; 20(9): 6235-6245, 2020 09 09.
Article em En | MEDLINE | ID: mdl-32804509
ABSTRACT
Despite the resistance of triple-negative breast cancer (TNBC) to targeted hormone therapy, the discovery of azobenzene combretastatin A4 (Azo-CA4) provides therapeutic opportunities for TNBC. Here, Azo-CA4 was loaded in upconverting nanocarriers that could convert near-infrared (NIR) light to UV light to activate Azo-CA4. Upon irradiation, Azo-CA4-loaded nanocarriers significantly reduced the viability of TNBC cells via both apoptosis and ferroptosis. The former was induced by photoisomerization of Azo-CA4, accompanied by microtubule breakdown and cell cycle arrest at G2/M phase. The latter was caused by the UV light-induced reduction of Fe3+ to Fe2+ that facilitates the peroxidation of tailored lipids. The cooperation between apoptosis and ferroptosis in eliminating TNBC was demonstrated in a xenograft mice model in terms of histological staining, tumor growth inhibition, and animal survival. Since the NIR light is only applied to the tumor site, the adverse effects of such triggered nanocarriers to the healthy organs are negligible.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias de Mama Triplo Negativas / Ferroptose Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias de Mama Triplo Negativas / Ferroptose Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article