Your browser doesn't support javascript.
loading
3D-Printed Immunosensor Arrays for Cancer Diagnostics.
Sharafeldin, Mohamed; Kadimisetty, Karteek; Bhalerao, Ketki S; Chen, Tianqi; Rusling, James F.
Afiliação
  • Sharafeldin M; Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
  • Kadimisetty K; LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA.
  • Bhalerao KS; Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
  • Chen T; Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
  • Rusling JF; Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
Sensors (Basel) ; 20(16)2020 Aug 12.
Article em En | MEDLINE | ID: mdl-32806676
ABSTRACT
Detecting cancer at an early stage of disease progression promises better treatment outcomes and longer lifespans for cancer survivors. Research has been directed towards the development of accessible and highly sensitive cancer diagnostic tools, many of which rely on protein biomarkers and biomarker panels which are overexpressed in body fluids and associated with different types of cancer. Protein biomarker detection for point-of-care (POC) use requires the development of sensitive, noninvasive liquid biopsy cancer diagnostics that overcome the limitations and low sensitivities associated with current dependence upon imaging and invasive biopsies. Among many endeavors to produce user-friendly, semi-automated, and sensitive protein biomarker sensors, 3D printing is rapidly becoming an important contemporary tool for achieving these goals. Supported by the widely available selection of affordable desktop 3D printers and diverse printing options, 3D printing is becoming a standard tool for developing low-cost immunosensors that can also be used to make final commercial products. In the last few years, 3D printing platforms have been used to produce complex sensor devices with high resolution, tailored towards researchers' and clinicians' needs and limited only by their imagination. Unlike traditional subtractive manufacturing, 3D printing, also known as additive manufacturing, has drastically reduced the time of sensor and sensor array development while offering excellent sensitivity at a fraction of the cost of conventional technologies such as photolithography. In this review, we offer a comprehensive description of 3D printing techniques commonly used to develop immunosensors, arrays, and microfluidic arrays. In addition, recent applications utilizing 3D printing in immunosensors integrated with different signal transduction strategies are described. These applications include electrochemical, chemiluminescent (CL), and electrochemiluminescent (ECL) 3D-printed immunosensors. Finally, we discuss current challenges and limitations associated with available 3D printing technology and future directions of this field.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Microfluídica / Impressão Tridimensional / Neoplasias Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Microfluídica / Impressão Tridimensional / Neoplasias Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article