Your browser doesn't support javascript.
loading
2D Chiral Stripe Nanopatterns Self-Assembled from Rod-Coil Block Copolymers on Microstripes.
Tang, Zhengmin; Xu, Zhanwen; Cai, Chunhua; Lin, Jiaping; Yao, Yuan; Yang, Chunming; Tian, Xiaohui.
Afiliação
  • Tang Z; Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shangha
  • Xu Z; Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shangha
  • Cai C; Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shangha
  • Lin J; Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shangha
  • Yao Y; Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shangha
  • Yang C; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
  • Tian X; Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shangha
Macromol Rapid Commun ; 41(19): e2000349, 2020 Oct.
Article em En | MEDLINE | ID: mdl-32830421
ABSTRACT
Chiral nanoarchitectures usually possess unique and intriguing properties. However, the construction of 2D chiral nanopatterns through polymer self-assembly is a challenge. Reported herein is the formation of chiral stripe nanopatterns through surface self-assembly of polypeptide-based rod-coil block copolymers on microstripes. The nanostripes align oblique to the boundary of the microstripes, resulting in the chirality of the nanopatterns. The chirality of the nanopatterns is closely related to the width of the microstripes, i.e., a narrower width results in higher chirality. Besides, the chiral sense of the nanopatterns can be regulated by the chirality of the polypeptide blocks. This work demonstrates the transmission of chirality from polymer to nanoarchitecture on a confined surface, which can guide the preparation of nanopatterns with tuned chiral features.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Micelas Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Micelas Idioma: En Ano de publicação: 2020 Tipo de documento: Article