Your browser doesn't support javascript.
loading
AvrA Exerts Inhibition of NF-κB Pathway in Its Naïve Salmonella Serotype through Suppression of p-JNK and Beclin-1 Molecules.
Yin, Chao; Liu, Zijian; Xian, Honghong; Jiao, Yang; Yuan, Yu; Li, Yang; Li, Qiuchun; Jiao, Xinan.
Afiliação
  • Yin C; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
  • Liu Z; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  • Xian H; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
  • Jiao Y; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  • Yuan Y; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
  • Li Y; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-Food Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China.
  • Li Q; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
  • Jiao X; Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
Int J Mol Sci ; 21(17)2020 Aug 23.
Article em En | MEDLINE | ID: mdl-32842467
Avian salmonellosis caused by Salmonella enterica serovar Enteritidis (S. Enteritidis) and Pullorum (S. Pullorum) remains a big threat to the poultry industry and public hygiene. AvrA is an effector involved in inhibiting inflammation. Compared to AvrA from S. Enteritidis (SE-AvrA), the AvrA from S. Pullorum (SP-AvrA) lacks ten amino acids at the C-terminal. In this study, we compared the anti-inflammatory response induced by SP-AvrA to that of SE-AvrA. Transient expression of SP-AvrA in epithelial cells resulted in significantly weaker inhibition of NF-κB pathway activation when treated with TNF-α compared to the inhibition by SE-AvrA. SP-AvrA expression in the S. Enteritidis resulted in weaker suppression of NF-κB pathway in infected HeLa cells compared to SE-AvrA expression in the cells, while SP-AvrA expressed in S. Pullorum C79-13 suppressed NF-κB activation in infected HeLa and Caco 2 BBE cells to a greater extent than did SE-AvrA because of the higher expression of SP-AvrA than SE-AvrA in S. Pullorum. Further analysis demonstrated that the inhibition of NF-κB pathway in Salmonella-infected cells corresponded to the downregulation of the p-JNK and Beclin-1 protein molecules. Our study reveals that AvrA modifies the anti-inflammatory response in a manner dependent on the Salmonella serotype through inhibition of NF-κB pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Salmonelose Animal / Proteínas de Bactérias / Salmonella enterica / Proteína Beclina-1 Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Salmonelose Animal / Proteínas de Bactérias / Salmonella enterica / Proteína Beclina-1 Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article