Your browser doesn't support javascript.
loading
IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER.
Wang, Xiao-Wen; Yuan, Liang-Jie; Yang, Ye; Zhang, Mei; Chen, Wen-Fang.
Afiliação
  • Wang XW; Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
  • Yuan LJ; Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
  • Yang Y; School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
  • Zhang M; Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
  • Chen WF; Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
Am J Physiol Endocrinol Metab ; 319(4): E734-E743, 2020 10 01.
Article em En | MEDLINE | ID: mdl-32865008
ABSTRACT
Autophagy dysfunctions are involved in the pathogenesis of Parkinson's disease (PD). In the present study, we aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) in the inhibitory effect of insulin-like growth factor-1 (IGF-1) against excessive autophagy in PD animal and cellular models. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment significantly induced mouse movement disorder and decreased the protein level of tyrosine hydroxylase (TH) in the substantia nigra (SN) and dopamine (DA) content in striatum. Along with the dopamine neuron injury, we observed significant upregulations of microtubule-associated light chain-3 II (LC3-II) and α-synuclein as well as a downregulation of P62 in MPTP-treated mice. These changes could be restored by IGF-1 pretreatment. Cotreatment with IGF-1R antagonist JB-1 or GPER antagonist G15 could block the neuroprotective effects of IGF-1. 1-Methy-4-phenylpyridinium (MPP+) treatment could also excessively activate autophagy along with the reduction of cell viability in SH-SY5Y cells. IGF-1 could inhibit the neurotoxicity through promoting the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which could also be antagonized by JB-1 or G15. These data suggest that IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Autofagia / Fator de Crescimento Insulin-Like I / Transdução de Sinais / Receptores de Estrogênio / Intoxicação por MPTP / Receptores Acoplados a Proteínas G / Neurônios Dopaminérgicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Autofagia / Fator de Crescimento Insulin-Like I / Transdução de Sinais / Receptores de Estrogênio / Intoxicação por MPTP / Receptores Acoplados a Proteínas G / Neurônios Dopaminérgicos Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article