Your browser doesn't support javascript.
loading
pipeComp, a general framework for the evaluation of computational pipelines, reveals performant single cell RNA-seq preprocessing tools.
Germain, Pierre-Luc; Sonrel, Anthony; Robinson, Mark D.
Afiliação
  • Germain PL; Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland. pierre-luc.germain@hest.ethz.ch.
  • Sonrel A; SIB Swiss Institute of Bioinformatics, Zürich, Switzerland. pierre-luc.germain@hest.ethz.ch.
  • Robinson MD; D-HEST Institute for Neurosciences, ETH Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland. pierre-luc.germain@hest.ethz.ch.
Genome Biol ; 21(1): 227, 2020 09 01.
Article em En | MEDLINE | ID: mdl-32873325
We present pipeComp ( https://github.com/plger/pipeComp ), a flexible R framework for pipeline comparison handling interactions between analysis steps and relying on multi-level evaluation metrics. We apply it to the benchmark of single-cell RNA-sequencing analysis pipelines using simulated and real datasets with known cell identities, covering common methods of filtering, doublet detection, normalization, feature selection, denoising, dimensionality reduction, and clustering. pipeComp can easily integrate any other step, tool, or evaluation metric, allowing extensible benchmarks and easy applications to other fields, as we demonstrate through a study of the impact of removal of unwanted variation on differential expression analysis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Análise de Sequência de RNA / Biologia Computacional / Análise de Célula Única Tipo de estudo: Evaluation_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Software / Análise de Sequência de RNA / Biologia Computacional / Análise de Célula Única Tipo de estudo: Evaluation_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article