Your browser doesn't support javascript.
loading
Discovery of 4-methyl-N-(4-((4-methylpiperazin- 1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((6-(pyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-yl)-oxy)benzamide as a potent inhibitor of RET and its gatekeeper mutant.
Li, Xiaoyang; Su, Jingyi; Yang, Yanru; Lian, Wenhua; Deng, Zhou; Yang, Zaiyou; Chen, Guyue; Zhang, Baoding; Dong, Chao; Liu, Xueyan; Li, Li; Wang, Zheng; Hu, Zhiyu; Xu, Qingyan; Deng, Xianming.
Afiliação
  • Li X; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Su J; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Yang Y; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Lian W; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Deng Z; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Yang Z; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Chen G; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Zhang B; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Dong C; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Liu X; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Li L; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Wang Z; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Hu Z; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Xu Q; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
  • Deng X; State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian, 361102, Ch
Eur J Med Chem ; 207: 112755, 2020 Dec 01.
Article em En | MEDLINE | ID: mdl-32882611
The receptor tyrosine kinase rearranged during transfection (RET) plays pivotal roles in several cancers, including thyroid carcinoma and non-small cell lung cancer (NSCLC). Currently, there are several FDA-approved RET inhibitors, but their indication is limited to thyroid cancer, and none can overcome their gatekeeper mutants (V804L and V804M). Here, we report the discovery of 9x representing a new chemotype of potent and selective RET inhibitors, using a rational design strategy of type II kinase inhibitors. 9x exhibited both superior antiproliferative activities against NSCLC-related carcinogenic fusions KIF5B-RET and CCDC6-RET and gatekeeper mutant-transformed Ba/F3 cells, with the lowest GI50 of 9 nM, and substantial inhibitory activities against wild-type RET and RET mutant proteins, with the best IC50 of 4 nM. More importantly, 9x also showed nanomole potency against RET-positive NSCLC cells LC-2/ad, but not against a panel of RET-negative cancer cells, such as A549, H3122, A375 or parental Ba/F3 cells, demonstrating its selective 'on-target' effect. In mouse xenograft models, 9x repressed tumor growth driven by both wild type KIF5B-RET-Ba/F3 and gatekeeper mutant KIF5B-RET(V804M)-Ba/F3 cells in a dose-dependent manner. Together, these data establish that 9x provides a good starting point for the development of targeted therapeutics against RET-positive cancers, especially NSCLC.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazóis / Desenho de Fármacos / Inibidores de Proteínas Quinases / Proteínas Proto-Oncogênicas c-ret / Mutação Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pirazóis / Desenho de Fármacos / Inibidores de Proteínas Quinases / Proteínas Proto-Oncogênicas c-ret / Mutação Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article