Your browser doesn't support javascript.
loading
An Explainable Artificial Intelligence Predictor for Early Detection of Sepsis.
Yang, Meicheng; Liu, Chengyu; Wang, Xingyao; Li, Yuwen; Gao, Hongxiang; Liu, Xing; Li, Jianqing.
Afiliação
  • Yang M; The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
  • Liu C; The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
  • Wang X; The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
  • Li Y; The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
  • Gao H; The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
  • Liu X; Department of Anesthesiology, The third Xiangya Hospital, Central South University, Changsha, China.
  • Li J; The State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing, China.
Crit Care Med ; 48(11): e1091-e1096, 2020 11.
Article em En | MEDLINE | ID: mdl-32885937
ABSTRACT

OBJECTIVES:

Early detection of sepsis is critical in clinical practice since each hour of delayed treatment has been associated with an increase in mortality due to irreversible organ damage. This study aimed to develop an explainable artificial intelligence model for early predicting sepsis by analyzing the electronic health record data from ICU provided by the PhysioNet/Computing in Cardiology Challenge 2019.

DESIGN:

Retrospective observational study.

SETTING:

We developed our model on the shared ICUs publicly data and verified on the full hidden populations for challenge scoring. PATIENTS Public database included 40,336 patients' electronic health records sourced from Beth Israel Deaconess Medical Center (hospital system A) and Emory University Hospital (hospital system B). A total of 24,819 patients from hospital systems A, B, and C (an unidentified hospital system) were sequestered as full hidden test sets.

INTERVENTIONS:

None. MEASUREMENTS AND MAIN

RESULTS:

A total of 168 features were extracted on hourly basis. Explainable artificial intelligence sepsis predictor model was trained to predict sepsis in real time. Impact of each feature on hourly sepsis prediction was explored in-depth to show the interpretability. The algorithm demonstrated the final clinical utility score of 0.364 in this challenge when tested on the full hidden test sets, and the scores on three separate test sets were 0.430, 0.422, and -0.048, respectively.

CONCLUSIONS:

Explainable artificial intelligence sepsis predictor model achieves superior performance for predicting sepsis risk in a real-time way and provides interpretable information for understanding sepsis risk in ICU.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Sepse Tipo de estudo: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial / Sepse Tipo de estudo: Diagnostic_studies / Etiology_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article