Your browser doesn't support javascript.
loading
A combined proteomic and metabolomic analyses of the priming phase during rat liver regeneration.
Yang, Hui; Guo, Jianlin; Jin, Wei; Chang, Cuifang; Guo, Xueqiang; Xu, Cunshuan.
Afiliação
  • Yang H; College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
  • Guo J; College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
  • Jin W; College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
  • Chang C; College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
  • Guo X; College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China.
  • Xu C; College of Life Science, Henan Normal University, Xinxiang, 453007, China; State Key Laboratory Cultivation Base for Cell Differentiation Regulation, Henan Normal University, Xinxiang, 453007, China. Electronic address: cellkeylab@126.com.
Arch Biochem Biophys ; 693: 108567, 2020 10 30.
Article em En | MEDLINE | ID: mdl-32898568
ABSTRACT
By comparing differentially abundant proteins and metabolites, the protein expression, metabolic changes and metabolic regulation mechanisms during the priming phase of liver regeneration (LR) were investigated. We combined proteomic analysis via isobaric tags for relative and absolute quantification (iTRAQ) with metabolomic analysis via nontargeted liquid chromatography-mass spectrometry (LC-MS). LC-MS was used to examine 29 energy metabolites expression alterations in targeted metabolomics. A total number of 441 differentially expressed proteins and 65 metabolites were identified. PSMB10, PSMB5, RCG_63409, PSME4 and PSMB7 were key node proteins, these proteins are involved in the proteasome pathway. The most strongly enriched transcription factor motif was TP63. These results point out a critical role of the proteasome pathway (defense mechanisms) and of TP63 (metabolic regulator) as the key transcription factor during the priming phase of LR. Metabolomic and metabolite analysis showed that profiling indicates upregulation of arginine biosynthesis and glycolysis as the main ATP-delivering pathway. Integrative proteomic and metabolomic analysis showed that biomolecular changes were primarily related to the neurological disease, cell death and survival and cell morphology. What's more, neurotransmitters may play an important role in the regulation of LR.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteômica / Metabolômica / Regeneração Hepática Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteômica / Metabolômica / Regeneração Hepática Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article