Your browser doesn't support javascript.
loading
Catalytic Asymmetric Synthesis of Chiral Covalent Organic Frameworks from Prochiral Monomers for Heterogeneous Asymmetric Catalysis.
Wang, Jian-Cheng; Kan, Xuan; Shang, Jin-Yan; Qiao, Hua; Dong, Yu-Bin.
Afiliação
  • Wang JC; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
  • Kan X; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
  • Shang JY; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
  • Qiao H; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
  • Dong YB; College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
J Am Chem Soc ; 142(40): 16915-16920, 2020 10 07.
Article em En | MEDLINE | ID: mdl-32941016
ABSTRACT
Direct synthesis, postsynthetic modification, and chiral induction have been recognized as three powerful methods to synthesize chiral covalent organic frameworks (CCOFs). However, catalytic asymmetric methodology, as the most important and effective synthetic approach to access chiral organics, has not been enabled for CCOFs synthesis thus far. Herein we report, for the first time, the construction of CCOFs from prochiral monomers via catalytic asymmetric polymerization. The obtained propargylamine-linked CCOFs can be the highly reusable chiral catalysts to promote asymmetric Michael addition reactions. The concept of catalytic asymmetric polymerization might open a new route for constructing the CCOFs that are not possible with the existing CCOF synthetic methods.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article