Your browser doesn't support javascript.
loading
Dwarf mongoose alarm calls: investigating a complex non-human animal call.
Collier, Katie; Radford, Andrew N; Stoll, Sabine; Watson, Stuart K; Manser, Marta B; Bickel, Balthasar; Townsend, Simon W.
Afiliação
  • Collier K; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
  • Radford AN; School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, UK.
  • Stoll S; Psycholinguistics Laboratory, University of Zurich, Plattenstrasse 54, 8032 Zurich, Switzerland.
  • Watson SK; Department of Comparative Language Science, University of Zurich, Plattenstrasse 54, 8032 Zurich, Switzerland.
  • Manser MB; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland.
  • Bickel B; Department of Comparative Language Science, University of Zurich, Plattenstrasse 54, 8032 Zurich, Switzerland.
  • Townsend SW; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland.
Proc Biol Sci ; 287(1935): 20192514, 2020 09 30.
Article em En | MEDLINE | ID: mdl-32962548
ABSTRACT
Communication plays a vital role in the social lives of many species and varies greatly in complexity. One possible way to increase communicative complexity is by combining signals into longer sequences, which has been proposed as a mechanism allowing species with a limited repertoire to increase their communicative output. In mammals, most studies on combinatoriality have focused on vocal communication in non-human primates. Here, we investigated a potential combination of alarm calls in the dwarf mongoose (Helogale parvula), a non-primate mammal. Acoustic analyses and playback experiments with a wild population suggest (i) that dwarf mongooses produce a complex call type (T3) which, at least at the surface level, seems to comprise units that are not functionally different to two meaningful alarm calls (aerial and terrestrial); and (ii) that this T3 call functions as a general alarm, produced in response to a wide range of threats. Using a novel approach, we further explored multiple interpretations of the T3 call based on the information content of the apparent comprising calls and how they are combined. We also considered an alternative, non-combinatorial interpretation that frames T3 as the origin, rather than the product, of the individual alarm calls. This study complements previous knowledge of vocal combinatoriality in non-primate mammals and introduces an approach that could facilitate comparisons between different animal and human communication systems.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vocalização Animal / Herpestidae Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vocalização Animal / Herpestidae Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article