Your browser doesn't support javascript.
loading
Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis.
Marya, Neil B; Powers, Patrick D; Chari, Suresh T; Gleeson, Ferga C; Leggett, Cadman L; Abu Dayyeh, Barham K; Chandrasekhara, Vinay; Iyer, Prasad G; Majumder, Shounak; Pearson, Randall K; Petersen, Bret T; Rajan, Elizabeth; Sawas, Tarek; Storm, Andrew C; Vege, Santhi S; Chen, Shigao; Long, Zaiyang; Hough, David M; Mara, Kristin; Levy, Michael J.
Afiliação
  • Marya NB; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Powers PD; Independent Researcher, Chelsea, Massachusetts, USA.
  • Chari ST; Gastroenterology, Hepatology and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Gleeson FC; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Leggett CL; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Abu Dayyeh BK; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Chandrasekhara V; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Iyer PG; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Majumder S; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Pearson RK; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Petersen BT; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Rajan E; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Sawas T; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Storm AC; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Vege SS; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA.
  • Chen S; Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Long Z; Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Hough DM; Diagnostic Radiology, Mayo Clinic, Rochester, Minnesota, USA.
  • Mara K; Biomedical Statistics and Informatics, Mayo Clinic Rochester, Rochester, Minnesota, USA.
  • Levy MJ; Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA levy.michael@mayo.edu.
Gut ; 70(7): 1335-1344, 2021 07.
Article em En | MEDLINE | ID: mdl-33028668
OBJECTIVE: The diagnosis of autoimmune pancreatitis (AIP) is challenging. Sonographic and cross-sectional imaging findings of AIP closely mimic pancreatic ductal adenocarcinoma (PDAC) and techniques for tissue sampling of AIP are suboptimal. These limitations often result in delayed or failed diagnosis, which negatively impact patient management and outcomes. This study aimed to create an endoscopic ultrasound (EUS)-based convolutional neural network (CNN) model trained to differentiate AIP from PDAC, chronic pancreatitis (CP) and normal pancreas (NP), with sufficient performance to analyse EUS video in real time. DESIGN: A database of still image and video data obtained from EUS examinations of cases of AIP, PDAC, CP and NP was used to develop a CNN. Occlusion heatmap analysis was used to identify sonographic features the CNN valued when differentiating AIP from PDAC. RESULTS: From 583 patients (146 AIP, 292 PDAC, 72 CP and 73 NP), a total of 1 174 461 unique EUS images were extracted. For video data, the CNN processed 955 EUS frames per second and was: 99% sensitive, 98% specific for distinguishing AIP from NP; 94% sensitive, 71% specific for distinguishing AIP from CP; 90% sensitive, 93% specific for distinguishing AIP from PDAC; and 90% sensitive, 85% specific for distinguishing AIP from all studied conditions (ie, PDAC, CP and NP). CONCLUSION: The developed EUS-CNN model accurately differentiated AIP from PDAC and benign pancreatic conditions, thereby offering the capability of earlier and more accurate diagnosis. Use of this model offers the potential for more timely and appropriate patient care and improved outcome.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Interpretação de Imagem Assistida por Computador / Redes Neurais de Computação / Endossonografia / Carcinoma Ductal Pancreático / Pancreatite Autoimune Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Interpretação de Imagem Assistida por Computador / Redes Neurais de Computação / Endossonografia / Carcinoma Ductal Pancreático / Pancreatite Autoimune Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article