Your browser doesn't support javascript.
loading
Differential cadmium translocation and accumulation between Nicotiana tabacum L. and Nicotiana rustica L. by transcriptome combined with chemical form analyses.
Huang, Wu-Xing; Zhang, Duo-Min; Cao, Yu-Qiao; Dang, Bing-Jun; Jia, Wei; Xu, Zi-Cheng; Han, Dan.
Afiliação
  • Huang WX; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
  • Zhang DM; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
  • Cao YQ; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
  • Dang BJ; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
  • Jia W; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
  • Xu ZC; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China.
  • Han D; College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan 450002, People's Republic of China. Electronic address: hd1987@henau.edu.cn.
Ecotoxicol Environ Saf ; 208: 111412, 2021 Jan 15.
Article em En | MEDLINE | ID: mdl-33039872
Cadmium (Cd) is a severely toxic and carcinogenic heavy metal. Cigarette smoking is one of the major source of Cd exposure in humans. Nicotiana tabacum is primarily a leaf Cd accumulator, while Nicotiana rustica is a root Cd accumulator among Nicotiana species. However, little is known about the mechanisms of differential Cd translocation and accumulation in Nicotiana. To find the key factors, Cd concentration, Cd chemical forms, and transcriptome analysis were comparatively studied between N. tabacum and N. rustica under control or 10 µM Cd stress. The leaf/root Cd concentration ratio of N. tabacum was 2.26 and that of N. rustica was 0.14. The Cd concentration in xylem sap of N. tabacum was significantly higher than that of N. rustica. The root of N. tabacum had obviously higher proportion of ethanol extractable Cd (40%) and water extractable Cd (16%) than those of N. rustica (16% and 6%). Meanwhile the proportion of sodium chloride extracted Cd in N. rustica (71%) was significantly higher than that in N. tabacum (30%). A total of 30710 genes expressed differentially between the two species at control, while this value was 30,294 under Cd stress, among which 27,018 were collective genes, manifesting the two species existed enormous genetic differences. KEGG pathway analysis showed the phenylpropanoid biosynthesis pathway was overrepresented between the two species under Cd stress. Several genes associated with pectin methylesterase, suberin and lignin synthesis, and heavy metal transport were discovered to be differential expressed genes between two species. The results suggested that the higher accumulation of Cd in the leaf of N. tabacum depends on a comprehensive coordination of Cd transport, including less cell wall binding, weaker impediment by the Casparian strip, and efficient xylem loading.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nicotiana / Cádmio / Transcriptoma Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nicotiana / Cádmio / Transcriptoma Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article