Your browser doesn't support javascript.
loading
Brain Oscillatory Activity during Tactile Stimulation Correlates with Cortical Thickness of Intact Areas and Predicts Outcome in Post-Traumatic Comatose Patients.
Portnova, Galina; Girzhova, Irina; Filatova, Daria; Podlepich, Vitaliy; Tetereva, Alina; Martynova, Olga.
Afiliação
  • Portnova G; Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia.
  • Girzhova I; Faculty of Medicine, Lomonosov Moscow State University, 27 Lomonosovsky pr-t., 119991 Moscow, Russia.
  • Filatova D; Faculty of Medicine, Lomonosov Moscow State University, 27 Lomonosovsky pr-t., 119991 Moscow, Russia.
  • Podlepich V; Federal State Autonomous Institution N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, 16 4-ya Tverskaya-Yamskaya str., 125047 Moscow, Russia.
  • Tetereva A; Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia.
  • Martynova O; Human High Nervous Activity Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, 5A Butlerova str., 117485 Moscow, Russia.
Brain Sci ; 10(10)2020 Oct 12.
Article em En | MEDLINE | ID: mdl-33053681
In this study, we have reported a correlation between structural brain changes and electroencephalography (EEG) in response to tactile stimulation in ten comatose patients after severe traumatic brain injury (TBI). Structural morphometry showed a decrease in whole-brain cortical thickness, cortical gray matter volume, and subcortical structures in ten comatose patients compared to fifteen healthy controls. The observed decrease in gray matter volume indicated brain atrophy in coma patients induced by TBI. In resting-state EEG, the power of slow-wave activity was significantly higher (2-6 Hz), and the power of alpha and beta rhythms was lower in coma patients than in controls. During tactile stimulation, coma patients' theta rhythm power significantly decreased compared to that in the resting state. This decrease was not observed in the control group and correlated positively with better coma outcome and the volume of whole-brain gray matter, the right putamen, and the insula. It correlated negatively with the volume of damaged brain tissue. During tactile stimulation, an increase in beta rhythm power correlated with the thickness of patients' somatosensory cortex. Our results showed that slow-wave desynchronization, as a nonspecific response to tactile stimulation, may serve as a sensitive index of coma outcome and morphometric changes after brain injury.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article