A Highly Scalable Method for Joint Whole-Genome Sequencing and Gene-Expression Profiling of Single Cells.
Mol Cell
; 80(3): 541-553.e5, 2020 11 05.
Article
em En
| MEDLINE
| ID: mdl-33068522
To address how genetic variation alters gene expression in complex cell mixtures, we developed direct nuclear tagmentation and RNA sequencing (DNTR-seq), which enables whole-genome and mRNA sequencing jointly in single cells. DNTR-seq readily identified minor subclones within leukemia patients. In a large-scale DNA damage screen, DNTR-seq was used to detect regions under purifying selection and identified genes where mRNA abundance was resistant to copy-number alteration, suggesting strong genetic compensation. mRNA sequencing (mRNA-seq) quality equals RNA-only methods, and the low positional bias of genomic libraries allowed detection of sub-megabase aberrations at ultra-low coverage. Each cell library is individually addressable and can be re-sequenced at increased depth, allowing multi-tiered study designs. Additionally, the direct tagmentation protocol enables coverage-independent estimation of ploidy, which can be used to identify cell singlets. Thus, DNTR-seq directly links each cell's state to its corresponding genome at scale, enabling routine analysis of heterogeneous tumors and other complex tissues.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Perfilação da Expressão Gênica
/
Análise de Célula Única
/
Sequenciamento Completo do Genoma
Limite:
Animals
/
Humans
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article