Your browser doesn't support javascript.
loading
Fusion peptide engineered "statically-versatile" titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration.
Chen, Junjian; Hu, Guansong; Li, Tianjie; Chen, Yunhua; Gao, Meng; Li, Qingtao; Hao, Lijing; Jia, Yongguang; Wang, Lin; Wang, Yingjun.
Afiliação
  • Chen J; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, China.
  • Hu G; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
  • Li T; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China.
  • Chen Y; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
  • Gao M; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China.
  • Li Q; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, China.
  • Hao L; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China.
  • Jia Y; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.
  • Wang L; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510006, China. Electronic address: wanglin3@scut.edu.cn.
  • Wang Y; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China; School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, 510006, China. Electronic address: imwangyj@scut.edu.cn.
Biomaterials ; 264: 120446, 2021 01.
Article em En | MEDLINE | ID: mdl-33069134
ABSTRACT
Although antimicrobial titanium implants can prevent biomaterial-associated infection (BAI) in orthopedics, they display cytotoxicity and delayed osseointegration. Therefore, versatile implants are desirable for simultaneously inhibiting BAI and promoting osseointegration, especially "statically-versatile" ones with nonessential external stimulations for facilitating applications. Herein, we develop a "statically-versatile" titanium implant by immobilizing an innovative fusion peptide (FP) containing HHC36 antimicrobial sequence and QK angiogenic sequence via sodium borohydride reduction promoted Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC-SB), which shows higher immobilization efficiency than traditional CuAAC with sodium ascorbate reduction (CuAAC-SA). The FP-engineered implant exhibits over 96.8% antimicrobial activity against four types of clinical bacteria (S. aureus, E. coli, P. aeruginosa and methicillin-resistant S. aureus), being stronger than that modified with mixed peptides. This can be mechanistically attributed to the larger bacterial accessible surface area of HHC36 sequence. Notably, the implant can simultaneously enhance cellular proliferation, up-regulate expressions of angiogenesis-related genes/proteins (VEGF and VEGFR-2) of HUVECs and osteogenesis-related genes/proteins (ALP, COL-1, RUNX-2, OPN and OCN) of hBMSCs. In vivo assay with infection and non-infection bone-defect model reveals that the FP-engineered implant can kill 99.63% of S. aureus, and simultaneously promote vascularization and osseointegration. It is believed that this study presents an excellent strategy for developing "statically-versatile" orthopedic implants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus aureus Resistente à Meticilina / Anti-Infecciosos Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Staphylococcus aureus Resistente à Meticilina / Anti-Infecciosos Idioma: En Ano de publicação: 2021 Tipo de documento: Article