Your browser doesn't support javascript.
loading
Quantifying the quantum heat contribution from a driven superconducting circuit.
Elouard, Cyril; Thomas, George; Maillet, Olivier; Pekola, J P; Jordan, A N.
Afiliação
  • Elouard C; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
  • Thomas G; QTF Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland.
  • Maillet O; QTF Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland.
  • Pekola JP; QTF Center of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland.
  • Jordan AN; Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA.
Phys Rev E ; 102(3-1): 030102, 2020 Sep.
Article em En | MEDLINE | ID: mdl-33075879
ABSTRACT
Heat flow management at the nanoscale is of great importance for emergent quantum technologies. For instance, a thermal sink that can be activated on-demand is a highly desirable tool that may accommodate the need to evacuate excess heat at chosen times, e.g., to maintain cryogenic temperatures or reset a quantum system to ground, and the possibility of controlled unitary evolution otherwise. Here we propose a design of such heat switch based on a single coherently driven qubit. We show that the heat flow provided by a hot source to the qubit can be switched on and off by varying external parameters, the frequency and the intensity of the driving. The complete suppression of the heat flow is a quantum effect occurring for specific driving parameters that we express and we analyze the role of the coherences in the free-qubit energy eigenbasis. We finally study the feasibility of this quantum heat switch in a circuit QED setup involving a charge qubit coupled to thermal resistances. We demonstrate robustness to experimental imperfections such as additional decoherence, paving the road towards experimental verification of this effect.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article