Your browser doesn't support javascript.
loading
Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography.
Steuwe, Andrea; Weber, Marie; Bethge, Oliver Thomas; Rademacher, Christin; Boschheidgen, Matthias; Sawicki, Lino Morris; Antoch, Gerald; Aissa, Joel.
Afiliação
  • Steuwe A; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Weber M; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Bethge OT; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Rademacher C; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Boschheidgen M; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Sawicki LM; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Antoch G; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
  • Aissa J; Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany.
Br J Radiol ; 94(1117): 20200677, 2021 Jan 01.
Article em En | MEDLINE | ID: mdl-33095654
OBJECTIVES: Modern reconstruction and post-processing software aims at reducing image noise in CT images, potentially allowing for a reduction of the employed radiation exposure. This study aimed at assessing the influence of a novel deep-learning based software on the subjective and objective image quality compared to two traditional methods [filtered back-projection (FBP), iterative reconstruction (IR)]. METHODS: In this institutional review board-approved retrospective study, abdominal low-dose CT images of 27 patients (mean age 38 ± 12 years, volumetric CT dose index 2.9 ± 1.8 mGy) were reconstructed with IR, FBP and, furthermore, post-processed using a novel software. For the three reconstructions, qualitative and quantitative image quality was evaluated by means of CT numbers, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) in six different ROIs. Additionally, the reconstructions were compared using SNR, peak SNR, root mean square error and mean absolute error to assess structural differences. RESULTS: On average, CT numbers varied within 1 Hounsfield unit (HU) for the three assessed methods in the assessed ROIs. In soft tissue, image noise was up to 42% lower compared to FBP and up to 27% lower to IR when applying the novel software. Consequently, SNR and CNR were highest with the novel software. For both IR and the novel software, subjective image quality was equal but higher than the image quality of FBP-images. CONCLUSION: The assessed software reduces image noise while maintaining image information, even in comparison to IR, allowing for a potential dose reduction of approximately 20% in abdominal CT imaging. ADVANCES IN KNOWLEDGE: The assessed software reduces image noise by up to 27% compared to IR and 48% compared to FBP while maintaining the image information.The reduced image noise allows for a potential dose reduction of approximately 20% in abdominal imaging.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doses de Radiação / Interpretação de Imagem Assistida por Computador / Radiografia Abdominal / Tomografia Computadorizada por Raios X Tipo de estudo: Observational_studies / Qualitative_research Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doses de Radiação / Interpretação de Imagem Assistida por Computador / Radiografia Abdominal / Tomografia Computadorizada por Raios X Tipo de estudo: Observational_studies / Qualitative_research Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2021 Tipo de documento: Article