Your browser doesn't support javascript.
loading
Nanostructured and Spiky Gold Shell Growth on Magnetic Particles for SERS Applications.
Bedford, Erin E; Méthivier, Christophe; Pradier, Claire-Marie; Gu, Frank; Boujday, Souhir.
Afiliação
  • Bedford EE; Laboratoire de Réactivité de Surface (LRS), CNRS, UMR 7197, Sorbonne Université, 4 place Jussieu, F-75005 Paris, France.
  • Méthivier C; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.
  • Pradier CM; Laboratoire de Réactivité de Surface (LRS), CNRS, UMR 7197, Sorbonne Université, 4 place Jussieu, F-75005 Paris, France.
  • Gu F; Laboratoire de Réactivité de Surface (LRS), CNRS, UMR 7197, Sorbonne Université, 4 place Jussieu, F-75005 Paris, France.
  • Boujday S; Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada.
Nanomaterials (Basel) ; 10(11)2020 Oct 27.
Article em En | MEDLINE | ID: mdl-33121012
ABSTRACT
Multifunctional micro- and nanoparticles have potential uses in advanced detection methods, such as the combined separation and detection of biomolecules. Combining multiple tasks is possible but requires the specific tailoring of these particles during synthesis or further functionalization. Here, we synthesized nanostructured gold shells on magnetic particle cores and demonstrated the use of them in surface-enhanced Raman scattering (SERS). To grow the gold shells, gold seeds were bound to silica-coated iron oxide aggregate particles. We explored different functional groups on the surface to achieve different interactions with gold seeds. Then, we used an aqueous cetyltrimethylammonium bromide (CTAB)-based strategy to grow the seeds into spikes. We investigated the influence of the surface chemistry on seed attachment and on further growth of spikes. We also explored different experimental conditions to achieve either spiky or bumpy plasmonic structures on the particles. We demonstrated that the particles showed SERS enhancement of a model Raman probe molecule, 2-mercaptopyrimidine, on the order of 104. We also investigated the impact of gold shell morphology-spiky or bumpy-on SERS enhancements and on particle stability over time. We found that spiky shells lead to greater enhancements, however their high aspect ratio structures are less stable and morphological changes occur more quickly than observed with bumpy shells.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article