Your browser doesn't support javascript.
loading
Developmental programming: gestational testosterone excess disrupts LH secretion in the female sheep fetus.
Landers, Renata S M; Padmanabhan, Vasantha; Cardoso, Rodolfo C.
Afiliação
  • Landers RSM; Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA.
  • Padmanabhan V; Departments of Pediatrics, University of Michigan, Ann Arbor, MI, 48109, USA.
  • Cardoso RC; Department of Animal Science, Texas A&M University, 2471 TAMU, College Station, TX, 77843-2471, USA. r.cardoso@tamu.edu.
Reprod Biol Endocrinol ; 18(1): 106, 2020 Nov 07.
Article em En | MEDLINE | ID: mdl-33158439
ABSTRACT

BACKGROUND:

Prenatal testosterone (T) excess results in reproductive and metabolic perturbations in female sheep that closely recapitulate those seen in women with polycystic ovary syndrome (PCOS). At the neuroendocrine level, prenatal T-treated sheep manifest increased pituitary sensitivity to GnRH and subsequent LH hypersecretion. In this study, we investigated the early effects of gestational T-treatment on LH secretion and pituitary function in the female sheep fetus. Additionally, because prenatal T effects can be mediated via the androgen receptor or due to changes in insulin homeostasis, prenatal co-treatment with an androgen antagonist (flutamide) or an insulin sensitizer (rosiglitazone) were tested.

METHODS:

Pregnant sheep were treated from gestational day (GD) 30 to 90 with either 1) vehicle (control); 2) T-propionate (~ 1.2 mg/kg); 3) T-propionate and flutamide (15 mg/kg/day); and 4) T-propionate and rosiglitazone (8 mg/day). At GD 90, LH concentrations were determined in the uterine artery (maternal) and umbilical artery (fetal), and female fetuses were euthanized. Pituitary glands were collected, weighed, and protein level of several key regulators of LH secretion was determined.

RESULTS:

Fetal pituitary weight was significantly reduced by prenatal T-treatment. Flutamide completely prevented the reduction in pituitary weight, while rosiglitazone only partially prevented this reduction. Prenatal T markedly reduced fetal LH concentrations and flutamide co-treatment partially restored LH to control levels. Prenatal T resulted in a marked reduction in LH-ß protein level, which was associated with a reduction in GnRH receptor and estrogen receptor-α levels and an increase in androgen receptor. With the exception of androgen receptor, flutamide co-treatment completely prevented these alterations in the fetal pituitary, while rosiglitazone largely failed to prevent these changes. Prenatal T-treatment did not alter the protein levels of insulin receptor-ß and activation (phosphorylation) of the insulin signaling pathways.

CONCLUSIONS:

These findings demonstrate that prenatal T-treatment results in reduced fetal LH secretion, reduced fetal pituitary weight, and altered protein levels of several regulators of gonadotropin secretion. The observations that flutamide co-treatment prevented these changes suggest that programming during fetal development likely occurs via direct androgen actions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testosterona / Hormônio Luteinizante / Desenvolvimento Fetal / Feto Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testosterona / Hormônio Luteinizante / Desenvolvimento Fetal / Feto Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2020 Tipo de documento: Article