Water-Stable 1D Double-Chain Cu Metal-Organic Framework-based Electrochemical Biosensor for Detecting l-Tyrosine.
Langmuir
; 36(46): 14123-14129, 2020 11 24.
Article
em En
| MEDLINE
| ID: mdl-33180511
An electrochemical biosensor based on a water-stable one-dimensional double-chain Cu(II) metal-organic framework (Cu-MOF) directly was constructed for efficiently recognizing l-tyrosine (l-Tyr) in biomimic environments. Cu-MOF: {[Cu(bpe)(fdc) (H2O)(DMF)]·0.5H2O}n (bpe = 1,2-di(4-pyridyl)ethylene, H2fdc = 2,5-furandicarboxylic acid, namely, Cu-1) was synthesized by a hydrothermal method. It was characterized by IR, scanning electron microscopy, atomic force microscopy, and PXRD techniques. Cu-1 exhibited extreme solvent and thermal stability as well as excellent electroconductive character. It was coated on a glassy carbon electrode (GCE) surface to prepare an electrochemical biosensor (Cu-1/GCE) which showed preferable biosensing ability toward l-Tyr. This Cu-MOF electrochemical biosensor showed simple operation and high sensitivity toward l-Tyr in the concentration range from 0.01 to 0.09 mM. The detection limit is 5.822 µM. Furthermore, Cu-1/GCE showed extremely excellent selectivity to l-Tyr in a biomimic environment with several amino acid interferents. This new strategy exhibits great potential applications for designing MOFs with excellent electrochemical activity.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article