Your browser doesn't support javascript.
loading
Thermoelectric Properties of InA Nanowires from Full-Band Atomistic Simulations.
Archetti, Damiano; Neophytou, Neophytos.
Afiliação
  • Archetti D; School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
  • Neophytou N; School of Engineering, University of Warwick, Coventry CV4 7AL, UK.
Molecules ; 25(22)2020 Nov 16.
Article em En | MEDLINE | ID: mdl-33207779
ABSTRACT
In this work we theoretically explore the effect of dimensionality on the thermoelectric power factor of indium arsenide (InA) nanowires by coupling atomistic tight-binding calculations to the Linearized Boltzmann transport formalism. We consider nanowires with diameters from 40 nm (bulk-like) down to 3 nm close to one-dimensional (1D), which allows for the proper exploration of the power factor within a unified large-scale atomistic description across a large diameter range. We find that as the diameter of the nanowires is reduced below d < 10 nm, the Seebeck coefficient increases substantially, as a consequence of strong subband quantization. Under phonon-limited scattering conditions, a considerable improvement of ~6× in the power factor is observed around d = 10 nm. The introduction of surface roughness scattering in the calculation reduces this power factor improvement to ~2×. As the diameter is decreased to d = 3 nm, the power factor is diminished. Our results show that, although low effective mass materials such as InAs can reach low-dimensional behavior at larger diameters and demonstrate significant thermoelectric power factor improvements, surface roughness is also stronger at larger diameters, which takes most of the anticipated power factor advantages away. However, the power factor improvement that can be observed around d = 10 nm could prove to be beneficial as both the Lorenz number and the phonon thermal conductivity are reduced at that diameter. Thus, this work, by using large-scale full-band simulations that span the corresponding length scales, clarifies properly the reasons behind power factor improvements (or degradations) in low-dimensional materials. The elaborate computational method presented can serve as a platform to develop similar schemes for two-dimensional (2D) and three-dimensional (3D) material electronic structures.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsenicais / Condutividade Térmica / Simulação por Computador / Condutividade Elétrica / Nanofios / Índio Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arsenicais / Condutividade Térmica / Simulação por Computador / Condutividade Elétrica / Nanofios / Índio Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article