Your browser doesn't support javascript.
loading
Nanoparticles suppress fluid instabilities in the thermal drawing of ultralong nanowires.
Hwang, Injoo; Guan, Zeyi; Cao, Chezheng; Tang, Wenliang; Chui, Chi On; Li, Xiaochun.
Afiliação
  • Hwang I; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
  • Guan Z; Division of Mechanical Convergence Engineering, Silla University, Busan, Republic of Korea.
  • Cao C; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
  • Tang W; Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA.
  • Chui CO; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, USA.
  • Li X; Department of Electrical and Computer Engineering, University of California, Los Angeles, CA, USA.
Nat Commun ; 11(1): 5932, 2020 Nov 23.
Article em En | MEDLINE | ID: mdl-33230110
Ultra-long metal nanowires and their facile fabrication have been long sought after as they promise to offer substantial improvements of performance in numerous applications. However, ultra-long metal ultrafine/nanowires are beyond the capability of current manufacturing techniques, which impose limitations on their size and aspect ratio. Here we show that the limitations imposed by fluid instabilities with thermally drawn nanowires can be alleviated by adding tungsten carbide nanoparticles to the metal core to arrive at wire lengths more than 30 cm with diameters as low as 170 nm. The nanoparticles support thermal drawing in two ways, by increasing the viscosity of the metal and lowering the interfacial energy between the boron silicate and zinc phase. This mechanism of suppressing fluid instability by nanoparticles not only enables a scalable production of ultralong metal nanowires, but also serves for widespread applications in other fluid-related fields.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article