Your browser doesn't support javascript.
loading
Intra- and Inter-Modular Connectivity Alterations in the Brain Structural Network of Spinocerebellar Ataxia Type 3.
Jao, Chi-Wen; Soong, Bing-Wen; Wang, Tzu-Yun; Wu, Hsiu-Mei; Lu, Chia-Feng; Wang, Po-Shan; Wu, Yu-Te.
Afiliação
  • Jao CW; Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan.
  • Soong BW; Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan.
  • Wang TY; Department of Neurology, Shuang Ho Hospital, New Taipei City 235, Taiwan.
  • Wu HM; Institute of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
  • Lu CF; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
  • Wang PS; Department of Neurology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
  • Wu YT; Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
Entropy (Basel) ; 21(3)2019 Mar 23.
Article em En | MEDLINE | ID: mdl-33267031
ABSTRACT
In addition to cerebellar degeneration symptoms, patients with spinocerebellar ataxia type 3 (SCA3) exhibit extensive involvements with damage in the prefrontal cortex. A network model has been proposed for investigating the structural organization and functional mechanisms of clinical brain disorders. For neural degenerative diseases, a cortical feature-based structural connectivity network can locate cortical atrophied regions and indicate how their connectivity and functions may change. The brain network of SCA3 has been minimally explored. In this study, we investigated this network by enrolling 48 patients with SCA3 and 48 healthy subjects. A novel three-dimensional fractal dimension-based network was proposed to detect differences in network parameters between the groups. Copula correlations and modular analysis were then employed to categorize and construct the structural networks. Patients with SCA3 exhibited significant lateralized atrophy in the left supratentorial regions and significantly lower modularity values. Their cerebellar regions were dissociated from higher-level brain networks, and demonstrated decreased intra-modular connectivity in all lobes, but increased inter-modular connectivity in the frontal and parietal lobes. Our results suggest that the brain networks of patients with SCA3 may be reorganized in these regions, with the introduction of certain compensatory mechanisms in the cerebral cortex to minimize their cognitive impairment syndrome.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2019 Tipo de documento: Article