Your browser doesn't support javascript.
loading
3D Printing Decellularized Extracellular Matrix to Design Biomimetic Scaffolds for Skeletal Muscle Tissue Engineering.
Baiguera, Silvia; Del Gaudio, Costantino; Di Nardo, Paolo; Manzari, Vittorio; Carotenuto, Felicia; Teodori, Laura.
Afiliação
  • Baiguera S; Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, Italy.
  • Del Gaudio C; Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Italy.
  • Di Nardo P; Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", Italy.
  • Manzari V; E. Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy.
  • Carotenuto F; Department of Clinical Science and Translational Medicine, University of Rome "Tor Vergata", Italy.
  • Teodori L; Interdepartmental Center for Regenerative Medicine (CIMER), University of Rome "Tor Vergata", Italy.
Biomed Res Int ; 2020: 2689701, 2020.
Article em En | MEDLINE | ID: mdl-33282941
ABSTRACT
Functional engineered muscles are still a critical clinical issue to be addressed, although different strategies have been considered so far for the treatment of severe muscular injuries. Indeed, the regenerative capacity of skeletal muscle (SM) results inadequate for large-scale defects, and currently, SM reconstruction remains a complex and unsolved task. For this aim, tissue engineered muscles should provide a proper biomimetic extracellular matrix (ECM) alternative, characterized by an aligned/microtopographical structure and a myogenic microenvironment, in order to promote muscle regeneration. As a consequence, both materials and fabrication techniques play a key role to plan an effective therapeutic approach. Tissue-specific decellularized ECM (dECM) seems to be one of the most promising material to support muscle regeneration and repair. 3D printing technologies, on the other side, enable the fabrication of scaffolds with a fine and detailed microarchitecture and patient-specific implants with high structural complexity. To identify innovative biomimetic solutions to develop engineered muscular constructs for the treatment of SM loss, the more recent (last 5 years) reports focused on SM dECM-based scaffolds and 3D printing technologies for SM regeneration are herein reviewed. Possible design inputs for 3D printed SM dECM-based scaffolds for muscular regeneration are also suggested.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Engenharia Tecidual / Materiais Biomiméticos / Matriz Extracelular / Alicerces Teciduais / Impressão Tridimensional Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Engenharia Tecidual / Materiais Biomiméticos / Matriz Extracelular / Alicerces Teciduais / Impressão Tridimensional Limite: Animals / Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article