Your browser doesn't support javascript.
loading
Ground-truth "resting-state" signal provides data-driven estimation and correction for scanner distortion of fMRI time-series dynamics.
Kumar, Rajat; Tan, Liang; Kriegstein, Alan; Lithen, Andrew; Polimeni, Jonathan R; Mujica-Parodi, Lilianne R; Strey, Helmut H.
Afiliação
  • Kumar R; Department of Biomedical Engineering, Stony Brook University, School of Medicine, Stony Brook, NY 11794-5281, USA.
  • Tan L; ALA Scientific Instruments, Inc., Farmingdale, NY, USA.
  • Kriegstein A; ALA Scientific Instruments, Inc., Farmingdale, NY, USA.
  • Lithen A; Department of Biomedical Engineering, Stony Brook University, School of Medicine, Stony Brook, NY 11794-5281, USA.
  • Polimeni JR; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical, School, Massachusetts General Hospital, Charlestown, MA, USA; Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, MA, USA.
  • Mujica-Parodi LR; Department of Biomedical Engineering, Stony Brook University, School of Medicine, Stony Brook, NY 11794-5281, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical, School, Massachusetts General Hospital, Charlestown, MA, USA; Laufer Center for Physical a
  • Strey HH; Department of Biomedical Engineering, Stony Brook University, School of Medicine, Stony Brook, NY 11794-5281, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA. Electronic address: Helmut.Strey@stonybrook.edu.
Neuroimage ; 227: 117584, 2021 02 15.
Article em En | MEDLINE | ID: mdl-33285328
ABSTRACT
The fMRI community has made great strides in decoupling neuronal activity from other physiologically induced T2* changes, using sensors that provide a ground-truth with respect to cardiac, respiratory, and head movement dynamics. However, blood oxygenation level-dependent (BOLD) time-series dynamics are also confounded by scanner artifacts, in complex ways that can vary not only between scanners but even, for the same scanner, between sessions. Unfortunately, the lack of an equivalent ground truth for BOLD time-series has thus far stymied the development of reliable methods for identification and removal of scanner-induced noise, a problem that we have previously shown to severely impact detection sensitivity of resting-state brain networks. To address this problem, we first designed and built a phantom capable of providing dynamic signals equivalent to that of the resting-state brain. Using the dynamic phantom, we then compared the ground-truth time-series with its measured fMRI data. Using these, we introduce data-quality metrics Standardized Signal-to-Noise Ratio (ST-SNR) and Dynamic Fidelity that, unlike currently used measures such as temporal SNR (tSNR), can be directly compared across scanners. Dynamic phantom data acquired from four "best-case" scenarios high-performance scanners with MR-physicist-optimized acquisition protocols, still showed scanner instability/multiplicative noise contributions of about 6-18% of the total noise. We further measured strong non-linearity in the fMRI response for all scanners, ranging between 8-19% of total voxels. To correct scanner distortion of fMRI time-series dynamics at a single-subject level, we trained a convolutional neural network (CNN) on paired sets of measured vs. ground-truth data. The CNN learned the unique features of each session's noise, providing a customized temporal filter. Tests on dynamic phantom time-series showed a 4- to 7-fold increase in ST-SNR and about 40-70% increase in Dynamic Fidelity after denoising, with CNN denoising outperforming both the temporal bandpass filtering and denoising using Marchenko-Pastur principal component analysis. Critically, we observed that the CNN temporal denoising pushes ST-SNR to a regime where signal power is higher than that of noise (ST-SNR > 1). Denoising human-data with ground-truth-trained CNN, in turn, showed markedly increased detection sensitivity of resting-state networks. These were visible even at the level of the single-subject, as required for clinical applications of fMRI.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética Tipo de estudo: Guideline Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética Tipo de estudo: Guideline Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article