Your browser doesn't support javascript.
loading
Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I.
Röpke, Michael; Saura, Patricia; Riepl, Daniel; Pöverlein, Maximilian C; Kaila, Ville R I.
Afiliação
  • Röpke M; Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany.
  • Saura P; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Riepl D; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Pöverlein MC; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
  • Kaila VRI; Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
J Am Chem Soc ; 142(52): 21758-21766, 2020 12 30.
Article em En | MEDLINE | ID: mdl-33325238
The respiratory complex I is a gigantic (1 MDa) redox-driven proton pump that reduces the ubiquinone pool and generates proton motive force to power ATP synthesis in mitochondria. Despite resolved molecular structures and biochemical characterization of the enzyme from multiple organisms, its long-range (∼300 Å) proton-coupled electron transfer (PCET) mechanism remains unsolved. We employ here microsecond molecular dynamics simulations to probe the dynamics of the mammalian complex I in combination with hybrid quantum/classical (QM/MM) free energy calculations to explore how proton pumping reactions are triggered within its 200 Å wide membrane domain. Our simulations predict extensive hydration dynamics of the antiporter-like subunits in complex I that enable lateral proton transfer reactions on a microsecond time scale. We further show how the coupling between conserved ion pairs and charged residues modulate the proton transfer dynamics, and how transmembrane helices and gating residues control the hydration process. Our findings suggest that the mammalian complex I pumps protons by tightly linked conformational and electrostatic coupling principles.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Complexo I de Transporte de Elétrons / Biocatálise / Simulação de Dinâmica Molecular Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Água / Complexo I de Transporte de Elétrons / Biocatálise / Simulação de Dinâmica Molecular Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article