Extraction Improvement of the Bioactive Blue-Green Pigment "Marennine" from Diatom Haslea ostrearia's Blue Water: A Solid-Phase Method Based on Graphitic Matrices.
Mar Drugs
; 18(12)2020 Dec 18.
Article
em En
| MEDLINE
| ID: mdl-33352967
The compound "marennine" is a blue-green pigment produced by the benthic microalgae Haslea ostrearia, with pathogenicity reduction activities against some bacteria and promising potential as a natural pigment in seafood industries. After decades of research, the chemical family of this compound still remains unclear, mainly because structural studies were impaired by the presence of co-extracted compounds in marennine isolates. To improve the purity of marennine extract, we developed a novel extraction method using a graphitic stationary phase, which provides various advantages over the previous procedure using tandem ultrafiltration. Our method is faster, more versatile, provides a better crude yield (66%, compared to 57% for ultrafiltration) and is amenable to upscaling with continuous photobioreactor cultivation. Our goal was to take advantage of the modulable surface properties of the graphitic matrix by optimizing its interactions with marennine. As such, the effects of organic modifiers, pH and reducing agents were studied. With this improvement on marennine purification, we achieved altogether the isolation of a fucoidan-related, sulfated polysaccharide from blue water. Characterization of the polysaccharides fraction suggests that roughly half of UV-absorbing compounds could be isolated from the marennine crude extracts. The identification of sulfated polysaccharides could be a major breakthrough for marennine purification, providing targeted isolation techniques. Likewise, the added value of Haslea ostrearia and the role of polysaccharides in previous marennine chemical characterization and bioactivity studies remain to be determined.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fenóis
/
Diatomáceas
/
Microextração em Fase Sólida
/
Grafite
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article