Your browser doesn't support javascript.
loading
Modeling by disruption and a selected-for partner for the nude locus.
Li, Jian; Lee, Yun-Kyoung; Fu, Wenyu; Whalen, Anne M; Estable, Mario C; Raftery, Laurel A; White, Kristin; Weiner, Lorin; Brissette, Janice L.
Afiliação
  • Li J; Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
  • Lee YK; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
  • Fu W; Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
  • Whalen AM; Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
  • Estable MC; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
  • Raftery LA; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
  • White K; Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.
  • Weiner L; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
  • Brissette JL; Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
EMBO Rep ; 22(3): e49804, 2021 03 03.
Article em En | MEDLINE | ID: mdl-33369874
A long-standing problem in biology is how to dissect traits for which no tractable model exists. Here, we screen for genes like the nude locus (Foxn1)-genes central to mammalian hair and thymus development-using animals that never evolved hair, thymi, or Foxn1. Fruit flies are morphologically disrupted by the FOXN1 transcription factor and rescued by weak reductions in fly gene function, revealing molecules that potently synergize with FOXN1 to effect dramatic, chaotic change. Strong synergy/effectivity in flies is expected to reflect strong selection/functionality (purpose) in mammals; the more disruptive a molecular interaction is in alien contexts (flies), the more beneficial it will be in its natural, formative contexts (mammals). The approach identifies Aff4 as the first nude-like locus, as murine AFF4 and FOXN1 cooperatively induce similar cutaneous/thymic phenotypes, similar gene expression programs, and the same step of transcription, pre-initiation complex formation. These AFF4 functions are unexpected, as AFF4 also serves as a scaffold in common transcriptional-elongation complexes. Most likely, the approach works because an interaction's power to disrupt is the inevitable consequence of its selected-for power to benefit.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pele / Fatores de Transcrição Forkhead Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pele / Fatores de Transcrição Forkhead Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2021 Tipo de documento: Article