Your browser doesn't support javascript.
loading
Protection from metal toxicity by Hsp40-like protein isolated from contaminated soil using functional metagenomic approach.
Thakur, Bharti; Yadav, Rajiv; Mukherjee, Arkadeep; Melayah, Delphine; Marmeisse, Roland; Fraissinet-Tachet, Laurence; Reddy, Mondem Sudhakara.
Afiliação
  • Thakur B; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
  • Yadav R; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France.
  • Mukherjee A; Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India.
  • Melayah D; Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
  • Marmeisse R; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France.
  • Fraissinet-Tachet L; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France.
  • Reddy MS; Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France.
Environ Sci Pollut Res Int ; 28(14): 17132-17145, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33394429
ABSTRACT
Pollution in the environment due to accumulation of potentially toxic metals results in deterioration of soil and water quality, thus impacting health of all living organisms including microbes. In the present investigation, a functional metagenomics approach was adopted to mine functional genes involved in metal tolerance from potentially toxic metal contaminated site. Eukaryotic cDNA library (1.0-4.0 kb) was screened for the genes providing tolerance to cadmium (Cd) toxicity through a functional complementation assay using Cd-sensitive Saccharomyces cerevisiae mutant ycf1Δ. Out of the 98 clones able to recover growth on Cd-supplemented selective medium, one clone designated as PLCc43 showed more tolerance to Cd along with some other clones. Sequence analysis revealed that cDNA PLCc43 encodes a 284 amino acid protein harbouring four characteristic zinc finger motif repeats (CXXCXGXG) and showing partial homology with heat shock protein (Hsp40) of Acanthamoeba castellanii. qPCR analysis revealed the induction of PLCc43 in the presence of Cd, which was further supported by accumulation of Cd in ycf1Δ/PLCc43 mutant. Cu-sensitive (cup1Δ), Zn-sensitive (zrc1Δ) and Co-sensitive (cot1Δ) yeast mutant strains were rescued from sensitivity when transformed with cDNA PLCc43 indicating its ability to confer tolerance to various potentially toxic metals. Oxidative stress tolerance potential of PLCc43 was also confirmed in the presence of H2O2. Present study results suggest that PLCc43 originating from a functional eukaryotic gene of soil community play an important role in detoxification of potentially toxic metals and may be used as biomarker in various contaminated sites.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Metais Pesados Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes do Solo / Metais Pesados Idioma: En Ano de publicação: 2021 Tipo de documento: Article